[
WormBook,
2016]
In C. elegans, mutants that are defective in muscle function and/or structure are easy to detect and analyze since: 1) body wall muscle is essential for locomotion, and 2) muscle structure can be assessed by multiple methods including polarized light, electron microscopy (EM), Green Fluorescent Protein (GFP) tagged proteins, and immunofluorescence microscopy. The overall structure of the sarcomere, the fundamental unit of contraction, is conserved from C. elegans to man, and the molecules involved in sarcomere assembly, maintenance, and regulation of muscle contraction are also largely conserved. This review reports the latest findings on the following topics: the transcriptional network that regulates muscle differentiation, identification/function/dynamics of muscle attachment site proteins, regulation of the assembly and maintenance of the sarcomere by chaperones and proteases, the role of muscle-specific giant protein kinases in sarcomere assembly, and the regulation of contractile activity, and new insights into the functions of the dystrophin glycoprotein complex.
[
2000]
There is growing interest in the use of bioindicators to assess metal toxicity in soil. The current ASTM Standard Guide for Conducting Laboratory Soil Toxicity Test with the lumbricid earthworm Eisenia fetida (E 1676-97) uses a common earthworm. The nematode Caenorhabditis elegans is a natural soil inhabitant with many characteristics that make an ideal alternate test organism. It has been used to assess metal toxicity in aquatic media, agar plates and in soil. Work is currently underway on the design of a C. elegans procedure for metals in soil. The objective of this study was to determine differences in LC50S between the chloride salt and the nitrate salt forms of cadmium, copper, lead, nickel, and zinc, in three types of soil: Cecil, Tifton, and ASTM artificial soil. Results indicated that the toxicological effect of the metallic salt varies and is dependent on the particular metal. For Cd and Pb the nitrate form is more toxic while Cu and Ni are more toxic in the chloride form. The composition of the soil also effected toxicity, with the metal being the least toxic in ASTM soil and more toxic in the Tifton soil. This strongly correlated with organic matter and clay content of the soil. It is important to determine the effects of carrier salt form and soil composition on metal toxicity, not only in order to standardize the protocol for C. elegans soil toxicity testing, but also in establishing acceptable exposure concentrations in the soil.