-
[
Cell,
2016]
Many animal tissues/cells are photosensitive, yet only two types of photoreceptors (i.e., opsins and cryptochromes) have been discovered in metazoans. The question arises as to whether unknown types ofphotoreceptors exist in the animal kingdom. LITE-1, a seven-transmembrane gustatory receptor (GR) homolog, mediates UV-light-induced avoidance behavior in C.elegans. However, it is not known whether LITE-1 functions as a chemoreceptor or photoreceptor. Here, we show that LITE-1 directly absorbs both UVA and UVB light with an extinction coefficient 10-100 times that of opsins and cryptochromes, indicating that LITE-1 is highly efficient in capturing photons. Unlike typical photoreceptors employing a prosthetic chromophore to capture photons, LITE-1 strictly depends on its protein conformation for photon absorption. We have further identified two tryptophan residues critical for LITE-1 function. Interestingly, unlike GPCRs, LITE-1 adopts a reversed membrane topology. Thus, LITE-1, a taste receptor homolog, represents a distinct type of photoreceptor in the animal kingdom.
-
He F, Zhang W, Pipe KP, Liu J, Cai W, Li Z, Kim GH, Ronan EA, Duan B, Fatima M, Gong J, Lee H, Xu XZS
[
Cell,
2019]
In search of the molecular identities of cold-sensing receptors, we carried out an unbiased genetic screen for cold-sensing mutants in C.elegans and isolated a mutant allele of
glr-3 gene that encodes a kainate-type glutamate receptor. While glutamate receptors are best known to transmit chemical synaptic signals in the CNS, we show that GLR-3 senses cold in the peripheral sensory neuron ASER to trigger cold-avoidance behavior. GLR-3 transmits cold signals via G protein signaling independently of its glutamate-gated channel function, suggesting GLR-3 asa metabotropic cold receptor. The vertebrate GLR-3 homolog GluK2 from zebrafish, mouse, and human can all function as a cold receptor in heterologous systems. Mouse DRG sensory neurons express GluK2, and GluK2 knockdown in these neurons suppresses their sensitivity to cold but not cool temperatures. Our study identifies an evolutionarily conserved cold receptor, revealing that a central chemical receptor unexpectedly functions as a thermal receptor in the periphery.
-
[
Talanta,
2018]
2-HPTP, a novel thiazolo [4, 5-b] pyridine-based Zn<sup>2+</sup> selective fluorescent probe has been synthesized and investigated. This probe exhibited a high selectivity towards Zn<sup>2+</sup> over other biologically essential cations such as Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, or Mg<sup>2+</sup>. 2-HPTP formed a 1:1 complex with Zn<sup>2+</sup> and showed a fluorescent enhancement with a long emission wavelength red-shift (85nm) upon complex formation with Zn<sup>2+</sup>. The detection limit and association constant were calculated as 3.48x10<sup>-7</sup> M and 2.40x10<sup>6</sup> M<sup>-1</sup> by a fluorescence titration experiment. Furthermore, the live cell imaging experiment showed that 2-HPTP was membrane permeable and photostable, and hence, could be used to monitor the concentration changes of intracellular Zn<sup>2+</sup>. The co-staining experiments in the cells demonstrated that 2-HPTP possessed high lysosomal selectivity in living cells. Finally, using the nematode C. elegans as an experimental model, we established that 2-HPTP could be successful in imaging Zn<sup>2+</sup> concentration changes in living tissues. Therefore, this molecule should be useful for studies on the biological functions of Zn<sup>2+</sup>.
-
[
EMBO J,
2018]
Cargo sorting and membrane carrier initiation in recycling endosomes require appropriately coordinated actin dynamics. However, the mechanism underlying the regulation of actin organization during recycling transport remains elusive. Here we report that the loss of PTRN-1/CAMSAP stalled actin exchange and diminished the cytosolic actin structures. Furthermore, we found that PTRN-1 is required for the recycling of clathrin-independent cargo hTAC-GFP The N-terminal calponin homology (CH) domain and central coiled-coils (CC) region of PTRN-1 can synergistically sustain the flow of hTAC-GFP We identified CYK-1/formin as a binding partner of PTRN-1. The N-terminal GTPase-binding domain (GBD) of CYK-1 serves as the binding interface for the PTRN-1 CH domain. The presence of the PTRN-1 CH domain promoted CYK-1-mediated actin polymerization, which suggests that the PTRN-1-CH:CYK-1-GBD interaction efficiently relieves autoinhibitory interactions within CYK-1. As expected, the overexpression of the CYK-1 formin homology domain 2 (FH2) substantially restored actin structures and partially suppressed the hTAC-GFP overaccumulation phenotype in<i>
ptrn-1</i>mutants. We conclude that the PTRN-1 CH domain is required to stimulate CYK-1 to facilitate actin dynamics during endocytic recycling.
-
[
J Biol Chem,
2012]
Tetrandrine, a bisbenzylisoquinoline alkaloid isolated from the broadly used Chinese medicinal herb Stephaniae tetrandrae, exhibits potent antitumor effects and has the potential to be used as a cancer chemotherapeutic agent. We previously reported that high concentrations of tetrandrine induce apoptosis in liver cancer cells. Here, we found that in human hepatocellular carcinoma (HCC) cells, a low dose of tetrandrine (5 m) induced the expression of LC3-II, resulted in the formation of acidic autophagolysosome vacuoles (AVOs), and caused a punctate fluorescence pattern with the GFP-LC3 protein, which all are markers for cellular autophagy. Tetrandrine induced the production of intracellular reactive oxygen species (ROS), and treatment with ROS scavengers significantly abrogated the tetrandrine-induced autophagy. These results suggest that the generation of ROS plays an important role in promoting tetrandrine-induced autophagy. Tetrandrine-induced mitochondrial dysfunction resulted in ROS accumulation and autophagy. ROS generation activated the ERK MAP kinase, and the ERK signaling pathway at least partially contributed to tetrandrine-induced autophagy in HCC cells. Moreover, we found that tetrandrine transcriptionally regulated the expression of autophagy related gene 7 (ATG7), which promoted tetrandrine-induced autophagy. In addition to in vitro studies, similar results were also observed in vivo, where tetrandrine caused the accumulation of ROS and induced cell autophagy in a tumor xenograft model. Interestingly, tetrandrine treatment also induced autophagy in a ROS-dependent manner in C. elegans muscle cells. Therefore, these findings suggest that tetrandrine is a potent autophagy agonist and may be a promising clinical chemotherapeutic agent.
-
[
Biochemistry,
1987]
The major intestinal esterase from the nematode Caenorhabditis elegans has been purified to essential homogeneity. Starting from whole worms, the overall purification is 9000-fold with a 10% recovery of activity. The esterase is a single polypeptide chain of Mr 60,000 and is stoichiometrically inhibited by organophosphates. Substrate preferences and inhibition patterns classify the enzyme as a carboxylesterase (EC 3.1.1.1), but the physiological function is unknown. The sequence of 13 amino acid residues at the esterase N- terminus has been determined. This partial sequence shows a surprisingly high degree of similarity to the N-terminal sequence of two carboxylesterases recently isolated from Drosophila mojavensis [Pen, J., van Beeumen, J., & Beintema, J. J. (1986) Biochem. J. 238, 691-699].
-
[
Toxins (Basel),
2024]
Microcystin-LR (MC-LR) is a secondary metabolite produced by cyanobacteria, globally renowned for its potent hepatotoxicity. However, an increasing body of research suggests that it also exhibits pronounced neurotoxicity. PP2A is a fundamental intracellular phosphatase that plays a pivotal role in cell development and survival. Although extensive research has focused on the binding of MC-LR to the C subunit of PP2A, few studies have explored the key amino acid sites that can prevent the binding of MC-LR to PP2A-C. Due to the advantages of <i>Caenorhabditis elegans</i> (<i>C. elegans</i>), such as ease of genetic editing and a short lifespan, we exposed nematodes to MC-LR in a manner that simulated natural exposure conditions based on MC-LR concentrations in natural water bodies (immersion exposure). Our findings demonstrate that MC-LR exerts comprehensive toxicity on nematodes, including reducing lifespan, impairing reproductive capabilities, and diminishing sensory functions. Notably, and for the first time, we observed that MC-LR neurotoxic effects can persist up to the F3 generation, highlighting the significant threat that MC-LR poses to biological populations in natural environments. Furthermore, we identified two amino acid sites (L252 and C278) in PP2A-C through mutations that prevented MC-LR binding without affecting PP2A activity. This discovery was robustly validated through behavioral studies and neuronal calcium imaging using nematodes. In conclusion, we identified two crucial amino acid sites that could prevent MC-LR from binding to PP2A-C, which holds great significance for the future development of MC-LR detoxification drugs.
-
Berynskyy M, Morimoto RI, Bukau B, Stengel F, Kirstein J, Szlachcic A, Arnsburg K, Stank A, Scior A, Nillegoda NB, Gao X, Guilbride DL, Aebersold R, Wade RC, Mayer MP
[
Nature,
2015]
Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states. Healthy metazoan cells effectively eliminate intracellular protein aggregates, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control.
-
[
Mol Immunol,
1999]
Invertebrate cells lack the
p53 recombination checkpoint but contain mobile DNA sequences that transpose by a mechanism in part shared with excision of the V(D)J recombination signal sequences (RSS). In this work, inversion, deletion, and duplication of sequences associated with an invertebrate C. elegans Tc6 element is described. The structure of this C. elegans sequence and other dispersed Tc6 elements suggests that covalently closed 'hairpin' structures are not unique to excision of the V(D)J RSS by the RAG proteins, but rather can be generated by transposases at transposon termini leading to characteristic inversion and duplication events. Comparative analysis of recombination events at invertebrate sequences resembling the vertebrate V(D)J RSS may be useful in understanding V(D)J recombination-mediated recombination events in malignant vertebrate cells or genetic diseases such as ataxia telangectasia, in which the
p53 recombination checkpoint is defective.
-
[
Phytother Res,
2008]
A bioassay-guided fractionation of Juniperus procera berries yielded antiparasitic, nematicidal and antifouling constituents, including a wide range of known abietane, pimarane and labdane diterpenes. Among these, abieta-7,13-diene (1) demonstrated in vitro antimalarial activity against Plasmodium falciparum D6 and W2 strains (IC(50) = 1.9 and 2.0 microg/mL, respectively), while totarol (6), ferruginol (7) and 7beta-hydroxyabieta-8,13-diene-11,12-dione (8) inhibited Leishmania donovani promastigotes with IC(50) values of 3.5-4.6 microg/mL. In addition, totarol demonstrated nematicidal and antifouling activities against Caenorhabditis elegans and Artemia salina at a concentration of 80 microg/mL and 1 microg/mL, respectively. The resinous exudate of J. virginiana afforded known antibacterial E-communic acid (4) and 4-epi-abietic acid (5), while the volatile oil from its trunk wood revealed large quantities of cedrol (9). Using GC/MS, the two known abietanes totarol (6) and ferruginol (7) were identified from the berries of J. procera, J. excelsa and J. phoenicea.