-
[
Integr Biol (Camb),
2017]
The roundworm Caenorhabditis elegans is an important model system for understanding the genetics and physiology of touch. Classical assays for C. elegans touch, which involve manually touching the animal with a probe and observing its response, are limited by their low throughput and qualitative nature. We developed a microfluidic device in which several dozen animals are subject to spatially localized mechanical stimuli with variable amplitude. The device contains 64 sinusoidal channels through which worms crawl, and hydraulic valves that deliver touch stimuli to the worms. We used this assay to characterize the behavioral responses to gentle touch stimuli and the less well studied harsh (nociceptive) touch stimuli. First, we measured the relative response thresholds of gentle and harsh touch. Next, we quantified differences in the receptive fields between wild type worms and a mutant with non-functioning posterior touch receptor neurons. We showed that under gentle touch the receptive field of the anterior touch receptor neurons extends into the posterior half of the body. Finally, we found that the behavioral response to gentle touch does not depend on the locomotion of the animal immediately prior to the stimulus, but does depend on the location of the previous touch. Responses to harsh touch, on the other hand, did not depend on either previous velocity or stimulus location. Differences in gentle and harsh touch response characteristics may reflect the different innervation of the respective mechanosensory cells. Our assay will facilitate studies of mechanosensation, sensory adaptation, and nociception.
-
[
J Neurophysiol,
2010]
DEG/ENaC channels have been broadly implicated in mechanosensory transduction, yet many questions remain about how these proteins contribute to complexes that sense mechanical stimuli. In C. elegans, two DEG/ENaC channel subunits are thought to contribute to a gentle touch transduction complex: MEC-4, which is essential for gentle touch sensation, and MEC-10, whose importance is less well defined. By characterizing a
mec-10 deletion mutant, we have found that MEC-10 is important, but not essential, for gentle touch responses in the body touch neurons ALM, PLM, and PVM. Surprisingly, the requirement for MEC-10 in ALM and PLM is spatially asymmetric;
mec-10 animals show significant behavioral and physiological responses to stimulation at the distal end of touch neuron dendrites, but respond poorly to stimuli applied near the neuronal cell body. The subcellular distribution of a rescuing MEC-10::GFP translational fusion was found to be restricted to the neuronal cell body and proximal dendrite, consistent with the hypothesis that MEC-10 protein is asymmetrically distributed within the touch neuron process. These results suggest that MEC-10 may contribute to only a subset of gentle touch mechanosensory complexes found preferentially at the proximal dendrite.
-
[
Nat Commun,
2011]
Most animals can distinguish two distinct types of touch stimuli: gentle (innocuous) and harsh (noxious/painful) touch, however, the underlying mechanisms are not well understood. Caenorhabditis elegans is a useful model for the study of gentle touch sensation. However, little is known about harsh touch sensation in this organism. Here we characterize harsh touch sensation in C. elegans. We show that C. elegans exhibits differential behavioural responses to harsh touch and gentle touch. Laser ablations identify distinct sets of sensory neurons and interneurons required for harsh touch sensation at different body segments. Optogenetic stimulation of the circuitry can drive behaviour. Patch-clamp recordings reveal that TRP family and amiloride-sensitive Na(+) channels mediate touch-evoked currents in different sensory neurons. Our work identifies the neural circuits and characterizes the sensory channels mediating harsh touch sensation in C. elegans, establishing it as a genetic model for studying this sensory modality.
-
[
Neuron,
2003]
In the nematode C. elegans, genes encoding components of a putative mechanotransducing channel complex have been identified in screens for light-touch-insensitive mutants. A long-standing question, however, is whether identified MEC proteins act directly in touch transduction or contribute indirectly by maintaining basic mechanoreceptor neuron physiology. In this study, we used the genetically encoded calcium indicator cameleon to record cellular responses of mechanosensory neurons to touch stimuli in intact, behaving nematodes. We defined a gentle touch sensory modality that adapts with a time course of approximately 500 ms and primarily senses motion rather than pressure. The DEG/ENaC channel subunit MEC-4 and channel-associated stomatin MEC-2 are specifically required for neural responses to gentle mechanical stimulation, but do not affect the basic physiology of touch neurons or their in vivo responses to harsh mechanical stimulation. These results distinguish a specific role for the MEC channel proteins in the process of gentle touch
-
[
Parasitology,
1976]
Subcutaneous injection of nursing mothers from day 16 to day 20 post partum with infective larvae of Strongyloides ratti or Nippostrongylus brasiliensis does not result in the development of worms in the litters if 1 h is allowed between injection and resumed nursing and suckling is terminated 24 h later. Thus the low numbers of N. brasiliensis (1% of the dose) which develop in litters after 24 h, 4 day or 5 days suckling when mothers are injected and returned to their young immediately, represent skin invasion and not milk-borne infection. Taking precautions consistent with the foregoing, S. ratti equivalent to 28%, 45%, 45% and 48% of the dose were shown to be transmitted in the milk to suckling rats of 4 mothers injected with 4000 L 3 on day 18 post partum and 72 h before weaning. One mother of the same batch failed to transmit worms (1% of the dose in the litter) and the take in all 5 mothers was insignificant (max. = 3% of the dose versus an average of 21% in controls). Large numbers of S. ratti were subsequently found in the intestines of mothers whose litters were weaned immediately after (21%) or 6 h after (16%) injection, whereas very few (less than 1%) developed in mothers deprived of their offspring 24 h after injection. Dynamic, rather than static, determinants of larval routes inside the host present the only logical basis for an explanation of these facts.
-
[
Parasitology,
1976]
The numbers of mature worms which developed in young rats after their mothers were injected with 4000 L3 late in lactation were 1% (Nippostrongylus brasiliensis) and 24% (Strongyloides ratti) of the dose administered. The low value for N. brasiliensis validates the conclusion that milk is a real and important vehicle for infection in S. ratti since possible errors from skin invasion of the young would have been common to both species. The level of mature S. ratti infection in lactating mothers in this experiment was negligible, 97-99% of the adult worms appearing in the offspring. These results may indicate that the milk route is possible with N. brasiliensis even though it is quantitatively insignificant.
-
[
Biochemistry,
2012]
Decapping scavenger (DcpS) enzymes catalyze the cleavage of a residual cap structure following 3' 5' mRNA decay. Some previous studies suggested that both m(7)GpppG and m(7)GDP were substrates for DcpS hydrolysis. Herein, we show that mononucleoside diphosphates, m(7)GDP (7-methylguanosine diphosphate) and m(3)(2,2,7)GDP (2,2,7-trimethylguanosine diphosphate), resulting from mRNA decapping by the Dcp1/2 complex in the 5' 3' mRNA decay, are not degraded by recombinant DcpS proteins (human, nematode, and yeast). Furthermore, whereas mononucleoside diphosphates (m(7)GDP and m(3)(2,2,7)GDP) are not hydrolyzed by DcpS, mononucleoside triphosphates (m(7)GTP and m(3)(2,2,7)GTP) are, demonstrating the importance of a triphosphate chain for DcpS hydrolytic activity. m(7)GTP and m(3)(2,2,7)GTP are cleaved at a slower rate than their corresponding dinucleotides (m(7)GpppG and m(3)(2,2,7)GpppG, respectively), indicating an involvement of the second nucleoside for efficient DcpS-mediated digestion. Although DcpS enzymes cannot hydrolyze m(7)GDP, they have a high binding affinity for m(7)GDP and m(7)GDP potently inhibits DcpS hydrolysis of m(7)GpppG, suggesting that m(7)GDP may function as an efficient DcpS inhibitor. Our data have important implications for the regulatory role of m(7)GDP in mRNA metabolic pathways due to its possible interactions with different cap-binding proteins, such as DcpS or eIF4E.
-
[
J Infect Dis,
2015]
BACKGROUND: Elimination of onchocerciasis and lymphatic filariasis is targeted for 2020. Given the coincident Loa loa infections in Central Africa and the potential for drug resistance development, the need for new microfilaricides and macrofilaricides has never been greater. With the genomes of L. loa, Onchocerca volvulus, Wuchereria bancrofti, and Brugia malayi available, new drug targets have been identified. METHODS: The effects of the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib on B. malayi adult males, adult females, L3 larvae, and microfilariae were assessed using a wide dose range (0-100 M) in vitro. RESULTS: For microfilariae, median inhibitory concentrations (IC50 values) on day 6 were 6.06 M for imatinib, 3.72 M for dasatinib, and 81.35 M for nilotinib; for L3 larvae, 11.27 M, 13.64 M, and 70.98 M, respectively; for adult males, 41.6 M, 3.87 M, and 68.22 M, respectively; and for adult females, 42.89 M, 9.8 M, and >100 M, respectively. Three-dimensional modeling suggests how these tyrosine kinase inhibitors bind and inhibit filarial protein activity. CONCLUSIONS: Given the safety of imatinib in humans, plans are underway for pilot clinical trials to assess its efficacy in patients with filarial infections.
-
[
Mech Ageing Dev,
2009]
Energy production via oxidative phosphorylation generates a mitochondrial membrane potential (DeltaPsi(m)) across the inner membrane. In this work, we show that a lower DeltaPsi(m) is associated with increased lifespan in Caenorhabditis elegans. The long-lived mutants
daf-2(
e1370),
age-1(
hx546),
clk-1(
qm30),
isp-1(
qm150) and
eat-2(
ad465) all have a lower DeltaPsi(m) than wild type animals. The lower DeltaPsi(m) of
daf-2(
e1370) is
daf-16 dependent, indicating that the insulin-like signaling pathway not only regulates lifespan but also mitochondrial energetics. RNA interference (RNAi) against 17 genes shown to extend lifespan also decrease DeltaPsi(m). Furthermore, lifespan can be significantly extended with the uncoupler carbonylcyanide-3-chlorophenylhydrazone (CCCP), which dissipates DeltaPsi(m). We conclude that longevity pathways converge on the mitochondria and lead to a decreased DeltaPsi(m). Our results are consistent with the 'uncoupling to survive' hypothesis, which states that dissipation of the DeltaPsi(m) will extend lifespan.
-
[
Arch Environ Contam Toxicol,
2005]
Fungi (Cunninghamella elegans ATCC 9245, Mucor ramannianus R-56, Aspergillus niger VKMF-1119, and Phanerochaete chrysosporium BKMF-1767) were tested to elucidate the biologic fate of the topical insect repellent N,N-diethyl-m-toluamide (DEET). The elution profile obtained from analysis by high-pressure liquid chromatography equipped with a reverse-phase C-18 column, showed that three peaks occurred after incubation of C. elegans, with which 1 mM DEET was combined as a final concentration. The peaks were not detected in the control experiments with either DEET alone or tested fungus alone. The metabolites produced by C. elegans exhibited a molecular mass of 207 with a fragment ion (m/z) at 135, a molecular mass of 179 with an m/z at 135, and a molecular mass of 163 with an m/z at 119, all of which correspond to N,N-diethyl-m-toluamide-N-oxide, N-ethyl-m-toluamide-N-oxide, and N-ethyl-m-toluamide, respectively. M. ramannianus R-56 also produced N, N-diethyl-m-toluamide-N-oxide and N-ethyl-m-toluamide but did not produce N-ethyl-m-toluamide-N-oxide. For the biologic toxicity test with DEET and its metabolites, the freshwater zooplankton Daphnia magna was used. The biologic sensitivity in decreasing order was DEET > N-ethyl-m-toluamide > N,N-diethyl-m-toluamide-N-oxide. Although DEET and its fungal metabolites showed relatively low mortality compared with other insecticides, the toxicity was increased at longer exposure periods. These are the first reports of the metabolism of DEET by fungi and of the biologic toxicity of DEET and its fungal metabolites to the freshwater zooplankton D. magna.