-
[
Science,
2002]
The nematode worm known as Caenorhabditis elegans is not much to look at. Just a millimeter long and transparent to boot, it is almost invisible to the naked eye. But in biological research the tiny worm looms large, providing a model system for studying everything from embryonic development to aging. Now, three researchers who pioneered the use of C. elegans as a model organism have won the Nobel Prize in Physiology or Medicine.
-
[
Genetics,
2014]
THE Genetics Society of America's Thomas Hunt Morgan Medal is awarded to an individual GSA member for lifetime achievement in the field of genetics. The 2014 recipient is Frederick Ausubel, whose 40-year career has centered on host-microbe interactions and host innate immunity. He is widely recognized as a key scientist responsible for establishing the modern postrecombinant DNA field of host-microbe interactions using simple nonvertebrate hosts. He has used genetic approaches to conduct pioneering work that spawned six related areas of research: the evolution and regulation of Rhizobium genes involved in symbiotic nitrogen fixation; the regulation of Rhizobium genes by two-component regulatory systems involving histidine kinases; the establishment of Arabidopsis thaliana as a worldwide model system; the identification of a large family of plant disease resistance genes; the identification of so-called multi-host bacterial pathogens; and the demonstration that Caenorhabditis elegans has an evolutionarily conserved innate immune system that shares features of both plant and mammalian immunity.
-
[
Genetics,
1996]
I fell in love with Caenorhabditis elegans in the summer of '72. Our relationship was cemented four years later, 20 years ago now, by the publication of a paper in Genetics on C. elegans chromosome rearrangements (Herman et al. 1976). My pleasant assignment here is to describe the beginning of that work and to relate it to current worm cytogenetics and chromosome mechanics.
-
[
Clin Med,
2003]
The recent award of a Nobel Prize to Sydney Brenner crowns an astonishingly distinguished scientific career. He must have come very close to winning it several times in the past. A colleague described him as 'a visionary who sees further into the future than anyone'. This is borne out by his decision - made 40 years ago - to study a one-millimetre long worm in detail to define the, biochemical and genetic control of its development and differentiation. The impact of these studies has been so profound, with a significant bearing on human physiology and disease, that over 400 laboratories worldwide have now adopted the worm as a research tool. In this article, a brief outline is given of his work on the worm and of some of the highlights of his brilliant career.
-
[
Science,
1995]
Programmed cell death (PCD), or apoptosis, is a conserved terminal differentiation program that multicellular organisms have evolved to get rid of cells that are not needed, that are in the way, or that are potentially dangerous. PCD can be equated with cell suicide in the sense that the dying cell plays an active role in promoting its own demise and removal from the organism.
-
[
Genetics,
2002]
This article marks the 25th anniversary of a paper reporting the first sex-determination mutants to be found in the nematode Caenorhabditis elegans. The isolation of these mutants initiated an extensive analysis of nematode sex determination and dosage compensation, carried out by a number of laboratories over the subsequent decades. As a result, the process of sex determination is now one of the most thoroughly understood parts of C. elegans development, in both genetic and molecular terms. It has also proved to have interesting repercussions on the study of sex determination in other organisms.
-
[
Genetics,
2019]
The Genetics Society of America's (GSA) Thomas Hunt Morgan Medal honors researchers for lifetime achievement in genetics. The recipient of the 2018 Morgan Medal, Barbara J. Meyer of the Howard Hughes Medical Institute and the University of California, Berkeley, is recognized for her career-long, groundbreaking investigations of how chromosome behaviors are controlled. Meyer's work has revealed mechanisms of sex determination and dosage compensation in <i>Caenorhabditis elegans</i> that continue to serve as the foundation of diverse areas of study on chromosome structure and function today, nearly 40 years after she began her work on the topic.