-
[
WormBook,
2006]
In the last decade, nematodes other than C. elegans have been studied intensively in evolutionary developmental biology. A few species have been developed as satellite systems for more detailed genetic and molecular studies. One such satellite species is the diplogastrid nematode Pristionchus pacificus. Here, I provide an overview about the biology, phylogeny, ecology, genetics and genomics of P. pacificus.
-
[
WormBook,
2005]
Asymmetric cell divisions play an important role in generating diversity during metazoan development. In the early C. elegans embryo, a series of asymmetric divisions are crucial for establishing the three principal axes of the body plan (AP, DV, LR) and for segregating determinants that specify cell fates. In this review, we focus on events in the one-cell embryo that result in the establishment of the AP axis and the first asymmetric division. We first describe how the sperm-derived centrosome initiates movements of the cortical actomyosin network that result in the polarized distribution of PAR proteins. We then briefly discuss how components acting downstream of the PAR proteins mediate unequal segregation of cell fate determinants to the anterior blastomere AB and the posterior blastomere P 1 . We also review how a heterotrimeric G protein pathway generates cortically based pulling forces acting on astral microtubules, thus mediating centrosome and spindle positioning in response to AP polarity cues. In addition, we briefly highlight events involved in establishing the DV and LR axes. The DV axis is established at the four-cell stage, following specific cell-cell interactions that occur between P 2 and EMS , the two daughters of P 1 , as well as between P 2 and ABp , a daughter of AB . The LR axis is established shortly thereafter by the division pattern of ABa and ABp . We conclude by mentioning how findings made in early C. elegans embryos are relevant to understanding asymmetric cell division and pattern formation across metazoan evolution.
-
[
WormBook,
2005]
C. elegans has emerged as a powerful genetic model organism in which to study synaptic function. Most synaptic proteins in the C. elegans genome are highly conserved and mutants can be readily generated by forward and reverse genetics. Most C. elegans synaptic protein mutants are viable affording an opportunity to study the functional consequences in vivo. Recent advances in electrophysiological approaches permit functional analysis of mutant synapses in situ. This has contributed to an already powerful arsenal of techniques available to study synaptic function in C. elegans. This review highlights C. elegans mutants affecting specific stages of the synaptic vesicle cycle, with emphasis on studies conducted at the neuromuscular junction.
-
[
WormBook,
2005]
C. elegans presents a low level of molecular diversity, which may be explained by its selfing mode of reproduction. Recent work on the genetic structure of natural populations of C. elegans indeed suggests a low level of outcrossing, and little geographic differentiation because of migration. The level and pattern of molecular diversity among wild isolates of C. elegans are compared with those found after accumulation of spontaneous mutations in the laboratory. The last part of the chapter reviews phenotypic differences among wild isolates of C. elegans.
-
[
WormBook,
2005]
This chapter reviews analytical tools currently in use for protein classification, and gives an overview of the C. elegans proteome. Computational analysis of proteins relies heavily on hidden Markov models of protein families. Proteins can also be classified by predicted secondary or tertiary structures, hydrophobic profiles, compositional biases, or size ranges. Strictly orthologous protein families remain difficult to identify, except by skilled human labor. The InterPro and NCBI KOG classifications encompass 79% of C. elegans protein-coding genes; in both classifications, a small number of protein families account for a disproportionately large number of genes. C. elegans protein-coding genes include at least ~12,000 orthologs of C. briggsae genes, and at least ~4,400 orthologs of non-nematode eukaryotic genes. Some metazoan proteins conserved in other nematodes are absent from C. elegans. Conversely, 9% of C. elegans protein-coding genes are conserved among all metazoa or eukaryotes, yet have no known functions.
-
[
WormBook,
2007]
The soil nematode Caenorhabditis briggsae is an attractive model system for studying evolution of both animal development and behavior. Being a close relative of C. elegans, C. briggsae is frequently used in comparative studies to infer species-specific function of the orthologous genes and also for studying the dynamics of chromosome evolution. The genome sequence of C. briggsae is valuable in reverse genetics and genome-wide comparative studies. This review discusses resources and tools, which are currently available, to facilitate study of C. briggsae in order to unravel mechanisms of gene function that confer morphological and behavioral diversity.
-
[
WormBook,
2005]
A wide variety of bacterial pathogens, as well as several fungi, kill C. elegans or produce non-lethal disease symptoms. This allows the nematode to be used as a simple, tractable model host for infectious disease. Human pathogens that affect C. elegans include Gram-negative bacteria of genera Burkholderia, Pseudomonas, Salmonella, Serratia and Yersinia; Gram-positive bacteria Enterococcus, Staphylococcus and Streptococcus; and the fungus Cryptococcus neoformans. Microbes that are not pathogenic to mammals, such as the insect pathogen Bacillus thuringiensis and the nematode-specific Microbacterium nematophilum, are also studied with C. elegans. Many of the pathogens investigated colonize the C. elegans intestine, and pathology is usually quantified as decreased lifespan of the nematode. A few microbes adhere to the nematode cuticle, while others produce toxins that kill C. elegans without a requirement for whole, live pathogen cells to contact the worm. The rapid growth and short generation time of C. elegans permit extensive screens for mutant pathogens with diminished killing, and some of the factors identified in these screens have been shown to play roles in mammalian infections. Genetic screens for toxin-resistant C. elegans mutants have identified host pathways exploited by bacterial toxins.
-
[
WormBook,
2005]
In C. elegans, the germ line is set apart from the soma early in embryogenesis. Several important themes have emerged in specifying and guiding the development of the nascent germ line. At early stages, the germline blastomeres are maintained in a transcriptionally silent state by the transcriptional repressor PIE-1 . When this silencing is lifted, it is postulated that correct patterns of germline gene expression are controlled, at least in part, by MES-mediated regulation of chromatin state. Accompanying transcriptional regulation by PIE-1 and the MES proteins, RNA metabolism in germ cells is likely to be regulated by perinuclear RNA-rich cytoplasmic granules, termed P granules. This chapter discusses the molecular nature and possible roles of these various germline regulators, and describes a recently discovered mechanism to protect somatic cells from following a germline fate.
-
[
WormBook,
2010]
An understanding of evolution at the molecular level requires the simultaneous consideration of the 5 fundamental evolutionary processes: mutation, recombination, natural selection, genetic drift, and population dynamic effects. Experimental, comparative genomic, and population genetic work in C. elegans has greatly expanded our understanding of these core processes, as well as of C. elegans biology. This chapter presents a brief overview of some of the most salient features of molecular evolution elucidated by the C. elegans system.
-
[
WormBook,
2007]
As in all living organisms, survival in C. elegans requires adequate management of energy supplies. Genetic screens have revealed that C. elegans fat regulation involves a complex network of genes with known or likely functions in food sensation, neuroendocrine signaling, uptake, transport, storage and utilization of fats. Core fat and sugar metabolic pathways are conserved in C. elegans. Flux through these pathways is modulated by cellular energy sensors that operate via transcriptional and translational regulatory mechanisms. In turn, neuroendocrine mechanisms couple sensory and metabolic pathways while neuromodulatory pathways influence both metabolic and food seeking/consumption pathways. The shared ancestry of C. elegans and mammalian fat regulatory pathways extends to developmental programs that underlie fat storage capacity, despite lack of dedicated adipocytes, and genes whose human homologs are implicated in obesity. This suggests that many of the newly identified C. elegans fat regulatory pathways play similar roles in mammals. C. elegans is ideally suited for the integrated study of mechanisms that operate in multiple tissues and elicit feedback responses that affect processes as diverse as metabolism and behavior.