-
Funayama T, Fukamoto K, Hamada N, Sakashita T, Watanabe H, Kiguchi K, Kobayashi Y, Suzuki M, Yokota Y, Taguchi M, Wada S, Kakizaki T, Furusawa Y
[
J Radiat Res (Tokyo),
2008]
Research concerning cellular responses to low dose irradiation, radiation-induced bystander effects, and the biological track structure of charged particles has recently received particular attention in the field of radiation biology. Target irradiation employing a microbeam represents a useful means of advancing this research by obviating some of the disadvantages associated with the conventional irradiation strategies. The heavy-ion microbeam system at JAEA-Takasaki, which was planned in 1987 and started in the early 1990''s, can provide target irradiation of heavy charged particles to biological material at atmospheric pressure using a minimum beam size 5 mum in diameter. A variety of biological material has been irradiated using this microbeam system including cultured mammalian and higher plant cells, isolated fibers of mouse skeletal muscle, silkworm (Bombyx mori) embryos and larvae, Arabidopsis thaliana roots, and the nematode Caenorhabditis elegans. The system can be applied to the investigation of mechanisms within biological organisms not only in the context of radiation biology, but also in the fields of general biology such as physiology, developmental biology and neurobiology, and should help to establish and contribute to the field of "microbeam biology".
-
[
International Worm Meeting,
2019]
The nematode Caenorhabditis elegans is a widely used model animal for investigating the fundamental mechanisms responsible for numerous biological processes. Targeted radiation exposure allows the effective knockdown of specific regions or tissues, thus helping to identify their roles in processes such as locomotion. However, radiation targeting requires the animal to be immobilized, while anesthesia prevents the radiation-induced effects on functions such as locomotion to be observed immediately. We previously developed a microfluidic chip method for immobilizing individual C. elegans during irradiation without the need for anesthesia (M. Suzuki et al., J. Radiat.Res., 2017; M. Suzuki et al., J. Neurosci. Methods, 2018). The on-chip immobilization of C. elegans under active conditions using a wettable microfluidic chip enabled the efficient targeted irradiation of multiple animals. The ease of handling and features of the microfluidic chip to prevent drying makes this system suitable for applications not only in microbeam irradiation, but also in several behavioral assays. This equipment has already been commercialized as 'Worm Sheet'. Furthermore, this microfluidic chip is economical because it can be used repeatedly. In this presentation, we introduce protocols of on-chip immobilization using this chip. Based on the results of locomotion assays of animals after long-term on-chip immobilization, we propose the suitable cover film. In addition, we show the examples of on-chip immobilization for both imaging observations and microbeam irradiation. Our developed chip has the potential to contribute to the success of future innovative experiments beyond their original objectives. Its standardized use in the future will facilitate the application of targeted microbeam irradiation to animals under active conditions, thus helping to identify the roles of specific cells/tissues in internal processes.
-
[
J Vis Exp,
2019]
Radiation is widely used for biological applications and for ion-beam breeding, and among these methods, microbeam irradiation represents a powerful means of identifying radiosensitive sites in living organisms. This paper describes a series of on-chip immobilization methods developed for the targeted microbeam irradiation of live individuals of Caenorhabditis elegans. Notably, the treatment of the polydimethylsiloxane (PDMS) microfluidic chips that we previously developed to immobilize C. elegans individuals without the need for anesthesia is explained in detail. This chip, referred to as a worm sheet, is resilient to allow the microfluidic channels to be expanded, and the elasticity allows animals to be enveloped gently. Also, owing to the self-adsorption capacity of the PDMS, animals can be sealed in the channels by covering the surface of the worm sheet with a thin cover film, in which animals are not pushed into the channels for enclosure. By turning the cover film over, we can easily collect the animals. Furthermore, the worm sheet shows water retention and allows C. elegans individuals to be subjected to microscopic observation for long periods under live conditions. In addition, the sheet is only 300 m thick, allowing heavy ions such as carbon ions to pass through the sheet enclosing the animals, thus allowing the ion particles to be detected and the applied radiation dose to be measured accurately. Because selection of the cover films used for enclosing the animals is very important for successful long-term immobilization, we conducted the selection of the suitable cover films and showed a recommended one among some films. As an application example of the chip, we introduced imaging observation of muscular activities of animals enclosing the microfluidic channel of the worm sheet, as well as the microbeam irradiation. These examples indicate that the worm sheets have greatly expanded the possibilities for biological experiments.
-
[
J Neurosci,
2003]
Thermotactic behavior in Caenorhabditis elegans is sensitive to both a worm's ambient temperature (T-amb) and its memory of the temperature of its cultivation (T-cult). The AFD neuron is part of a neural circuit that underlies thermotactic behavior. By monitoring the fluorescence of pH-sensitive green fluorescent protein localized to synaptic vesicles, we measured the rate of the synaptic release of AFD in worms cultivated at temperatures between 15 and 25degreesC, and subjected to fixed, ambient temperatures in the same range. We found that the rate of AFD synaptic release is high if either T-amb > T-cult or T-amb > T-cult, but AFD synaptic release is low if T-amb congruent to T-cult. This suggests that AFD encodes a direct comparison between T-amb and T-cult.
-
[
Trends Mol Med,
2007]
Transforming growth factor beta1 (TGFbeta1), an important pleiotropic, immunoregulatory cytokine, uses distinct signaling mechanisms in lymphocytes to affect T-cell homeostasis, regulatory T (T(reg))-cell and effector-cell function and tumorigenesis. Defects in TGFbeta1 expression or its signaling in T cells correlate with the onset of several autoimmune diseases. TGFbeta1 prevents abnormal T-cell activation through the modulation of Ca(2+)-calcineurin signaling in a Caenorhabditis elegans Sma and Drosophila Mad proteins (SMAD)3 and SMAD4-independent manner; however, in T(reg) cells, its effects are mediated, at least in part, through SMAD signaling. TGFbeta1 also acts as a pro-inflammatory cytokine and induces interleukin (IL)-17-producing pathogenic T-helper cells (T(h) IL-17 cells) synergistically during an inflammatory response in which IL-6 is produced. Here, we will review TGFbeta1 and its signaling in T cells with an emphasis on the regulatory arm of immune tolerance.
-
[
Genomics,
1995]
Recently, a novel family of genes with a region of homology to the mouse T locus, which is known to play a crucial, and conserved, role in vertebrate development, has been discovered. The region of homology has been named the T-box. The T-box domain of the prototypical T locus product is associated with sequence-specific DNA binding activity. In this report, we have characterized four members of the T-box gene family from the nematode Caenorhabditis elegans. All lie in close proximity to each other in the middle of chromosome III. Homology analysis among all completely sequenced T-box products indicates a larger size for the conserved T-box domain (166 to 203 residues) than previously reported. Phylogenetic analysis suggests that one C. elegans T-box gene may be a direct ortholog of the mouse Tbx2 and Drosophila omb genes. The accumulated data demonstrate the ancient nature of the T-box gene family and suggest the existence of at least three separate T-box-containing genes in a common early metazoan ancestor to nematodes and vertebrates.
-
[
Glycobiology,
2006]
The common O-glycan core structure in animal glycoproteins is the core 1 disaccharide Galbeta1-3GalNAcalpha1-Ser/Thr, which is generated by addition of Gal to GalNAcalpha1-Ser/Thr by core 1 UDP-Gal:GalNAcalpha1-Ser/Thr beta1,3-galactosyltransferase (core 1 beta3-Gal-T or T-synthase, EC2.4.1.122)(2). Although O-glycans play important roles in vertebrates, much remains to be learned from model organisms such as the free-living nematode Caenorhabditis elegans, which offer many advantages in exploring O-glycan structure/function. Here we report the cloning and enzymatic characterization of T-synthase from C. elegans (Ce-T-synthase). A putative C. elegans gene for T-synthase, C38H2.2, was identified in GenBank by a BlastP search using the human T-synthase protein sequence. The full-length cDNA for Ce-T-synthase, which was generated by PCR using a C. elegans cDNA library as the template, contains 1,170 bp including the stop TAA. The cDNA encodes a protein of 389 amino acids with typical type-II membrane topology and a remarkable 42.7% identity to the human T-synthase. Ce-T-synthase has 7 Cys residues in the lumenal domain including 6 conserved Cys residues in all of the orthologs. The Ce-T-synthase has 4 potential N-glycosylation sequons, whereas the mammalian orthologs lack N-glycosylation sequons. Only one gene for Ce-T-synthase was identified in the genome-wide search and it contains 8 exons. Promoter analysis of the Ce-T-synthase using green fluorescent protein constructs show that the gene is expressed at all developmental stages and appears to be in all cells. Unexpectedly, only minimal activity was recovered in the recombinant, soluble Ce-T-synthase secreted from a wide variety of mammalian cell lines, whereas robust enzyme activity was recovered in the soluble Ce-T-synthase expressed in Hi-5 insect cells. Vertebrate T-synthase requires the molecular chaperone Cosmc, but our results show that Ce-T-synthase does not require Cosmc, and might require invertebrate-specific factors for formation of the optimally active enzyme. These results show that the Ce-T-synthase is a functional ortholog to the human T-synthase in generating core 1 O-glycans and opens new avenues to explore O-glycan function in this model organism.
-
[
Int J Syst Evol Microbiol,
2007]
A yellow-pigmented, Gram-positive, aerobic, non-motile, non-spore-forming, irregular rod-shaped bacterium (strain TAN 31504(T)) was isolated from the bacteriophagous nematode Caenorhabditis elegans. Based on 16S rRNA gene sequence similarity, DNA G+C content of 69.5 mol%, 2,4-diaminobutyric acid in the cell-wall peptidoglycan, major menaquinone MK-11, abundance of anteiso- and iso-fatty acids, polar lipids diphosphatidylglycerol and phosphatidylglycerol and a number of shared biochemical characteristics, strain TAN 31504(T) was placed in the genus Leucobacter. DNA-DNA hybridization comparisons demonstrated a 91 % DNA-DNA relatedness between strain TAN 31504(T) and Leucobacter chromiireducens LMG 22506(T) indicating that these two strains belong to the same species, when the recommended threshold value of 70 % DNA-DNA relatedness for the definition of a bacterial species by the ad hoc committee on reconciliation of approaches to bacterial systematics is considered. Based on distinct differences in morphology, physiology, chemotaxonomic markers and various biochemical characteristics, it is proposed to split the species L. chromiireducens into two novel subspecies, Leucobacter chromiireducens subsp. chromiireducens subsp. nov. (type strain L-1(T)=CIP 108389(T)=LMG 22506(T)) and Leucobacter chromiireducens subsp. solipictus subsp. nov. (type strain TAN 31504(T)=DSM 18340(T)=ATCC BAA-1336(T)).
-
[
Biology (Basel),
2020]
To clarify the tissue responsible for a biological function, that function can be experimentally perturbed by an external stimulus, such as radiation. Radiation can be precisely and finely administered and any subsequent change in function examined. To investigate the involvement of the central nervous system (CNS) in <i>Caenorhabditis elegans'</i> locomotion, we irradiated a limited 20-m-diameter area of the CNS with a single dose and evaluated the resulting effects on motility. However, whether irradiated area (beam size)-dependent or dose-dependent effects on motility occur via targeted irradiation remain unknown. In the present study, we examined the irradiated area- and dose-dependent effects of CNS-targeted irradiation on the motility of <i>C. elegans</i> using a collimating microbeam system and confirmed the involvement of the CNS and body-wall muscle cells around the CNS in motility. After CNS-targeted microbeam irradiation, <i>C. elegans'</i> motility was assayed. The results demonstrated a dose-dependent effect of CNS-targeted irradiation on motility reflecting direct effects on the irradiated CNS. In addition, when irradiated with 1000-Gy irradiation, irradiated area (beam size)-dependent effects were observed. This method has two technical advantages: Performing a series of on-chip imaging analyses before and after irradiation and targeted irradiation using a distinct ion-beam size.
-
[
Genome,
1997]
The T-box gene family consists of members that share a unique DNA binding domain. The best characterized T-box gene, Brachyury or T, encodes a transcription factor that plays an important role in early vertebrate development. Seven other recently described mouse T-box genes are also expressed during development. In the nematode Caenorhabditis elegans, four T-box genes have been characterized to date. In this study, we describe three new C. elegans T-box genes, named
Ce-tbx-11,
Ce-tbx-12, and
Ce-tbx-17.
Ce-tbx-11 and
Ce-tbx-17 were uncovered through the sequencing efforts of the C. elegans Genome Project.
Ce-tbx-12 was uncovered through degenerate PCR analysis of C. elegans genomic DNA.
Ce-tbx-11 and
Ce-tbx-17 are located in close proximity to the four other previously described T-box genes in the central region of chromosome III. In contrast,
Ce-tbx-12 maps alone to chromosome II. Phylogenetic analysis of all known T-box domain sequences provides evidence of an ancient origin for this gene family.