[
MicroPubl Biol,
2021]
Although C. elegans is one of the best-studied model organisms, an estimate of its cell sizes and tissues is missing. Here we used the Virtual Worm that is based on electron microscopy images to calculate a zeroth-order approximation of cell and tissue sizes of C. elegans. We conclude that the intestine is the largest tissue, followed by the hypodermis, gonads, body wall muscles, pharynx, and neurons. Thus, we provide an approximation of tissue volumes of young adult C. elegans.
[
MicroPubl Biol,
2023]
Gene regulation has been studied in C. elegans for over 30 years. In this analysis of 102 publications, we find that most transcriptional cis-regulatory elements are located within 5,000 bp of the transcription start site. Over 75% of studies conclude that transcriptional elements and 5'UTRs activate-, while 3'UTRs repress gene expression. While gene regulatory mutations make up less than 0.8% of alleles in forward genetics screens, recent CRISPR-Cas approaches are increasing the number of tested mutations. This work provides a resource of known gene regulatory sequences in C.elegans.
[
Genetics,
2017]
The Genetics Society of America's Edward Novitski Prize recognizes a single experimental accomplishment or a body of work in which an exceptional level of creativity and intellectual ingenuity has been used to design and execute scientific experiments to solve a difficult problem in genetics. The 2017 winner, Jonathan Hodgkin, used elegant genetic studies to unravel the sex determination pathway in Caenorhabditis elegans He inferred the order of genes in the pathway and their modes of regulation using epistasis analyses-a powerful tool that was quickly adopted by other researchers. He expanded the number and use of informational suppressor mutants in C. elegans that are able to act on many genes. He also introduced the use of collections of wild C. elegans to study naturally occurring genetic variation, paving the way for SNP mapping and QTL analysis, as well as studies of hybrid incompatibilities between worm species. His current work focuses on nematode-bacterial interactions and innate immunity.