-
[
Genetics,
2019]
The Genetics Society of America's (GSA) Thomas Hunt Morgan Medal honors researchers for lifetime achievement in genetics. The recipient of the 2018 Morgan Medal, Barbara J. Meyer of the Howard Hughes Medical Institute and the University of California, Berkeley, is recognized for her career-long, groundbreaking investigations of how chromosome behaviors are controlled. Meyer's work has revealed mechanisms of sex determination and dosage compensation in <i>Caenorhabditis elegans</i> that continue to serve as the foundation of diverse areas of study on chromosome structure and function today, nearly 40 years after she began her work on the topic.
-
[
Chembiochem,
2003]
Thank you so very much for inviting me to be here. It gives me a mingled sense of humility at how much I owe to others, and of joy that the collective work on the worm has been recognised in this way.
-
[
Toxicon,
2001]
Diphtheria toxin is one of the most extensively studied and well understood bacterial toxins. Ever since its discovery in the late 1800's this toxin has occupied a central focus in the field of toxinology. In this review, I present a chronology of major discoveries that led to our current understanding of the structure and activity of diphtheria toxin.
-
[
Sci Aging Knowledge Environ,
2002]
This article reviews key events in the genetic analysis of aging in the worm. The events are presented in the form of a timeline and include landmark papers, key meetings, and the development of important funding agencies. I also speculate on events that might appear in this timeline if this review were written in the distant future.
-
[
Genetics,
1996]
I fell in love with Caenorhabditis elegans in the summer of '72. Our relationship was cemented four years later, 20 years ago now, by the publication of a paper in Genetics on C. elegans chromosome rearrangements (Herman et al. 1976). My pleasant assignment here is to describe the beginning of that work and to relate it to current worm cytogenetics and chromosome mechanics.
-
[
Curr Biol,
2003]
microRNAs form an abundant class of 21-22 nucleotide, non-coding RNA that is common to diverse species of multicellular life. Although they are currently the subject of intense, directed study, the path toward their discovery has been dominated by chance and serendipity. In this review, I examine how these tiny molecules have risen from genetic obscurity to scientific stardom, and discuss the emerging biological functions of these novel
-
[
Int J Dev Biol,
2000]
1969 was a landmark year. But for me it was not Neil Armstrong's giant leap or Woodstock heralding the beginning of the end of the sixties that sticks in my mind. It was a visit I made to Cambridge to meet a "bloke who is starting a new project to study some sort of worm", as my head of department at the Medical Research Council's National Institute of Medical Research informed me...
-
[
Nat Rev Genet,
2001]
The nematode Caenorhabditis elegans is well known to practising biologists as a model organism. Early work with C. elegans is best understood as part of a descriptive tradition in biological practice. Although the resources that have been generated by the C. elegans community have been revolutionary, they were produced by traditional methods and approaches. Here, I review the choice and use of the worm as an experimental organism for genetics and neurobiology that began in the 1960s.
-
[
Stud Hist Philos Biol Biomed Sci,
2012]
This paper argues that the history of the computer, of the practice of computation and of the notions of 'data' and 'programme' are essential for a critical account of the emergence and implications of data-driven research. In order to show this, I focus on the transition that the investigations on the worm C. elegans experienced in the Laboratory of Molecular Biology of Cambridge (UK). Throughout the 1980s, this research programme evolved from a study of the genetic basis of the worm's development and behaviour to a DNA mapping and sequencing initiative. By examining the changing computing technologies which were used at the Laboratory, I demonstrate that by the time of this transition researchers shifted from modelling the worm's genetic programme on a mainframe apparatus to writing minicomputer programs aimed at providing map and sequence data which was then circulated to other groups working on the genetics of C. elegans. The shift in the worm research should thus not be simply explained in the application of computers which transformed the project from hypothesis-driven to a data-intensive endeavour. The key factor was rather a historically specific technology-in-house and easy programmable minicomputers-which redefined the way of achieving the project's long-standing goal, leading the genetic programme to co-evolve with the practices of data production and distribution.