-
[
International Worm Meeting,
2013]
Species involved in host-pathogen relationships exert selective pressures on each other. This co-evolution situation results in an arms race between host and pathogen, which may lead to specialisation of their interactions.
We recently found three related horizontally-transmitted RNA viruses that naturally infect C. elegans or C. briggsae, called Orsay, Santeuil and Le Blanc viruses (Felix et al. 2011, Franz et al. 2012). Here we study their specificity for C. elegans vs. C. briggsae, and at the intraspecific level in C. briggsae.
We first used viral filtrates to infect a set of C. elegans and C. briggsae isolates, and measured by RT-PCR the virus ability to replicate. We find that the Orsay virus can infect C. elegans but not C. briggsae, whereas Santeuil and Le Blanc viruses infect C. briggsae, but not C. elegans. Thus, each virus shows specificity toward one of these two Caenorhabditis species.
Given that C. briggsae can be infected by two viruses, we then measured viral replication after infection of C. briggsae isolates by either Santeuil or Le Blanc viruses, using RT-qPCR. We observed 1) wide variation among C. briggsae isolates; 2) correlation between the sensitivities to each virus; 3) an exception to the correlation. Schematically, C. briggsae isolates can be separated into two groups: sensitive isolates, in which the viruses replicate efficiently; and resistant ones, in which the viruses either disappear or are barely maintained. Strikingly, all sensitive strains belong to the temperate C. briggsae clade, raising the possibility that sensitivity is derived within this clade. The exception to the correlation in sensitivity is HK104, a temperate-clade isolate from Japan. HK104 is sensitive to the Santeuil virus, but resistant to Le Blanc. This result opens the possibility to study specificity of host-pathogen interactions through genetic analysis.
-
[
International Worm Meeting,
2015]
We study the natural coevolution between Caenorhabditis briggsae and its two recently described RNA viruses called Santeuil and Le Blanc (1, 2). The main advantage of this system is to combine the access to wild host and virus populations with powerful molecular tools and experimental evolution designs. We characterized the incidence of the two C. briggsae viruses in France and found that they are found in sympatry. By monitoring the viral RNAs in wild-caught C. briggsae isolates using Fluorescent In Situ Hybridization, we demonstrated that the Le Blanc and Santeuil viruses could coexist in one host population, one animal and one intestinal cell. Molecular variation of the wild-caught viruses was assessed by sequencing their two RNA molecules. While both viruses' diversities are geographically structured, we detected balancing selection on the RNA-dependent RNA polymerase (RdRp) locus in one local Santeuil population. Despite the frequent incidence of coinfection in the wild, we found no evidence for genetic exchange (recombination or RNA reassortment) between the Santeuil and Le Blanc viruses. However, we found clear evidence for RNA reassortment between different Santeuil virus variants. Finally, we investigated natural variation in C. briggsae resistance to each virus. We tested a set of wild isolates -representative of C. briggsae worldwide diversity- for their sensitivity to the Santeuil and Le Blanc viruses. While temperate C. briggsae genotypes are generally susceptible to both viruses, the tested tropical C. briggsae genotypes are resistant to both viruses. Most interestingly, two Japanese C. briggsae genotypes show specific resistance to the Le Blanc virus. To understand the genetic basis of the general and virus-specific resistances of C. briggsae, we carried out a QTL-mapping approach using recombinant inbred lines between AF16 and HK104 (3) and identified a main QTL region on chromosome IV responsible for the variation in resistance to Santeuil virus infection.(1) Felix, Ashe, Piffaretti et al. 2011 PloS Biology. (2) Franz et al. 2012 Journal of Virology. (3) Ross et al. 2011 PLoS Genetics..
-
[
International Worm Meeting,
2013]
We recently found three viruses, Orsay, Santeuil and Le Blanc, which naturally infect Caenorhabditis nematodes (1,2). These ss(+)RNA viruses cause intestinal cell symptoms and are horizontally transmitted. Whereas C. elegans can so far only be infected by the Orsay virus, European C. briggsae genotypes are susceptible to both Santeuil and Le Blanc viruses, and both viruses have been found in the same locations. This vulnerability of C. briggsae to two viruses enables studies of in vivo viral competition and of the mechanisms driving their short-term evolution, as well as the impact of their competition on worm fitness.
RNA viruses may evolve rapidly through both high mutation rates and recombination events. The impact of recombination widely varies from one viral species to another but in all cases, for recombination to occur, different virus types have to infect the same host cell. The first step is thus to assess whether different virus species can co-infect the same worm population, the same animal and the same cell.
By using quantitative RT-PCR, we demonstrate that the Le Blanc and Santeuil viruses can coexist in a worm population, even when originally introduced at widely different concentrations. The two viruses are jointly maintained over 10 worm generations. We presently investigate the co-infection at the whole organism and single cell levels by tracking the viral RNAs in co-infected worms using Fluorescent In Situ Hybridization.
1- Felix, Ashe, Piffaretti et al. 2011 PloS biology.
2- Franz et al. 2012 Journal of virology.
-
[
West Coast Worm Meeting,
2002]
To understand the evolution of developmental mechanisms, we are doing a comparative analysis of vulval patterning in C. elegans and C. briggsae. C. briggsae is closely related to C. elegans and has identical looking vulval morphology. However, recent studies have indicated subtle differences in the underlying mechanisms of development. The recent completion of C. briggsae genome sequence by the C. elegans Sequencing Consortium is extremely valuable in identifying the conserved genes between C. elegans and C. briggsae.
-
[
International Worm Meeting,
2019]
C. inopinata is a newly discovered sibling species of C. elegans. Despite their phylogenetic closeness, they have many differences in morphology and ecology. For example, while C. elegans is hermaphroditic, C. inopinata is gonochoristic; C. inopinata is nearly twice as long as C. elegans. A comparative analysis of C. elegans and C. inopinata enables us to study how genomic changes cause these phenotypic differences. In this study, we focused on early embryogenesis of C. inopinata. First, by the microparticle bombardment method we made a C. inopinata line that express GFP::histone in whole body, and compared the early embryogenesis with C. elegans by DIC and fluorescent live imaging. We found that the position of pronuclei and polar bodies were different between these two species. In C. elegans, the female and male pronuclei first become visible in anterior and posterior sides, respectively, then they meet at the center of embryo. On the other hand, the initial position of pronuclei were more closely located in C. inopinata. Also, the polar bodies usually appear in the anterior side of embryo in C. elegans, but they appeared at random positions in C. inopinata. Therefore, we infer that C. inopinata may have a different polarity formation mechanism from that in C. elegans. We are also analyzing temperature dependency of embryogenesis in C. inopinata, whose optimal temperature is ~7 degree higher than that in C. elegans.
-
[
Development & Evolution Meeting,
2008]
Recently, seven new Caenorhabditis have been discovered, bringing the number of Caenorhabditis species in culture to 17, 10 of which are undescribed. To elucidate the relationships of the new species to the five species with sequenced genomes, we have used sequence data from two rRNA genes and several protein-coding genes for reconstructing the phylogenetic tree of Caenorhabditis. Four new species (spp. 5, 9, 10, 11) group within the so-called Elegans group of Caenorhabditis, with C. elegans being the first branch. Whereas none of them is likely to be the sister species of C. elegans, we now know of two close relatives of C. briggsae-C. sp. 5 and C. sp. 9. C. sp. 9 can hybridize with C. briggsae in the laboratory [see abstract by Woodruff et al.]. Of the remaining new species, C. sp. 7 branches off between C. elegans and C. japonica. This species is easier to cultivate than C. japonica and may be a better candidate for comparative experimental work. Two of the new species branch off before C. japonica as sister species of C. sp. 3 and C. drosophilae+C. sp. 2, respectively. Only one of the new species, C. sp. 11, is hermaphroditic. The position of C. sp. 11 in the phylogeny suggests that hermaphroditism evolved three times within the Elegans group. Two of the new species were isolated from rotting leaves and flowers, and five from rotting fruit. Rotting fruit is also the habitat in which C. elegans has been found to proliferate (Barriere and Felix, Genetics 2007) and from which C. briggsae, C. brenneri and C. remanei were repeatedly isolated. This suggests that the habitat of the stem species of Caenorhabditis after the divergence of the earliest branches (C. plicata, C. sonorae and C. sp. 1) was rotting fruit. The rate of discovery of new Caenorhabditis species has steadily increased since the description of C. elegans in 1899, with a leap in the last two years. There is no indication that we are even close to knowing all species in this genus.
-
[
International Worm Meeting,
2015]
Dosage compensation (DC) across Caenorhabditis species exemplifies an essential process that has undergone rapid co-evolution of protein-DNA interactions central to its mechanism. In C. elegans, recruitment elements on X (rex sites) recruit a condensin-like DC complex (DCC) to hermaphrodite X chromosomes to balance gene expression between the sexes. Recruitment assays in vivo showed that C. elegans rex sites do not recruit the DCC of C. briggsae, and vice versa. To understand how DC complexes and X chromosomes evolved to use different X targeting sequences, we compared DCC subunits and binding sites in C. elegans to those in three species of the C. briggsae clade (15-30 MYR diverged): C. briggsae, its close relative C. nigoni (C. sp. 9), and C. tropicalis (C. sp. 11). By raising antibodies and introducing endogenous tags with TALENs or CRISPR/Cas9, we showed that homologs of both SDC-2, the pivotal X targeting factor, and DPY-27, a DCC-specific condensin subunit, bind X chromosomes of XX animals. Although the DCC shares key components across these four species, the binding sites differ. First, ChIP-seq studies in C. briggsae and C. nigoni identified DCC binding sites that are homologous across these close relatives but differ from C. elegans sites in sequence and location. Second, C. elegans sites use motifs enriched on X (MEX and MEXII) to drive DCC binding, but these motifs are not in C. briggsae or C. nigoni DCC sites and are not X-enriched. Third, we found an X-enriched motif at DCC binding sites of C. briggsae and C. nigoni that is not X-enriched in C. elegans. An oligo with the C. briggsae motif recruits the DCC in C. briggsae, but a similar oligo lacking the motif fails to recruit, establishing the importance of the motif. Fourth, another motif was found in C. briggsae and C. nigoni that shares a few nucleotides with MEX, but its functional divergence was shown by C. elegans recruitment assays. Fifth, two endogenous C. briggsae X-chromosome regions with strong C. elegans MEX motifs fail to recruit the C. briggsae DCC, as assayed by ChIP-seq and recruitment assays. None of these DCC motifs is enriched on the C. tropicalis draft X sequence, supporting further binding site divergence within the C. briggsae clade. Ongoing ChIP-seq studies in C. tropicalis will help determine how C. elegans and C. briggsae clade motifs are evolutionarily related. Comparison of DCC targeting mechanisms across these four species allows us to characterize a rarely captured event: the recent co-evolution of a protein complex and its rapidly diverged target sequences across an entire X chromosome.
-
[
International Worm Meeting,
2009]
Recently, nine new Caenorhabditis have been discovered, bringing the number of Caenorhabditis species in culture to nineteen, eleven of which are undescribed. To elucidate the relationships of the new species to the five species with sequenced genomes, we have used sequence data from two rRNA genes and several protein-coding genes for reconstructing the phylogenetic tree of Caenorhabditis. Four new species (spp. 5, 9, 10 and 11) group within the so-called Elegans group of Caenorhabditis, with C. elegans being the first branch. Although none of them is the sister species of C. elegans, C. sp. 5 and C. sp. 9 are close relatives of C. briggsae. C. sp. 9 can hybridize with C. briggsae in the laboratory. Of the remaining new species, C. sp. 7 branches off between C. elegans and C. japonica. Three of these species, C. sp. 7, C. sp. 9 and C. sp. 11 have been chosen for genome sequencing. Four further new species branch off before C. japonica within a monophyletic clade which also comprises C. sp. 3 and C. drosophilae. Only one of the new species, C. sp. 11, is hermaphroditic. The position of C. sp. 11 in the phylogeny suggests that hermaphroditism evolved three times within the Elegans group. Two of the new species were isolated from rotting leaves and flowers, and seven from rotting fruit. Rotting fruit is also the habitat in which C. elegans has been found to proliferate (Barriere and Felix, Genetics 2007) and from which C. briggsae, C. brenneri and C. remanei were repeatedly isolated. This suggests that the habitat of the stem species of Caenorhabditis after the divergence of the earliest branches (C. plicata, C. sonorae and C. sp. 1) was rotting fruit. Other characters, like the shape of the stoma and the male tail, introns, susceptibility to RNAi and genome size are being evaluated in the context of the phylogeny. The rate of discovery of new Caenorhabditis species has steadily increased since the description of C. elegans in 1899, with a leap in the last few years. There is no indication that we are even close to knowing all species in this genus.
-
[
International Worm Meeting,
2003]
Previous studies have shown that C. elegans ovo-related gene
lin-48 expresses in a small number of cells including the excretory duct cell. In the related species C. briggsae, the expression is conserved in all cells except the excretory duct. This
lin-48 expression difference affects excretory duct morphogenesis. In C. briggsae, as well as in C. elegans
lin-48(
sa496) mutants, the excretory duct is more anterior than in C. elegans wild type. This indicates that C. elegans
lin-48 (
Ce-lin-48) is involved in duct morphogenesis and positioning, but this gene function is absent in C. briggsae (1). We have made reporter transgenes composed of the
lin-48 regulatory sequences from C. elegans or C. briggsae driving expression of green fluorescent protein (GFP). Tests of these clones in each species showed that only the
Ce-lin-48 is expressed in excretory duct cell in C. elegans animal. These results indicate that there are differences in both cis-regulatory sequences and trans-acting proteins between the two species. By creating chimeric reporter transgenes including C. elegans and C. briggsae regulatory sequences, we have found that one difference between the two species is the presence of regulatory sequences in
Ce-lin-48 that respond to the bZip protein CES-2 (1). The
lin-48 gene expression differences between C. elegans and C. briggsae could result from loss of excretory duct expression in the C.briggsae lineage or acquired expression in the C. elegans lineage. To distinguish between these possibilities, we have analyzed three additional Caenorhabditis species (C. remanei, C. sp. CB5161 and C. sp. PS1010). We found these species have a duct morphology similar to C. briggsae indicating the C. elegans morphology is unique to this species. For comparison to C. elegans and C. briggsae, we have isolated the
lin-48 gene from C. remanei and C. sp. CB5161. Alignment of the
lin-48 regulatory sequences reveals that the sequences are more conserved among C. briggsae, C. remanei and C. sp. 5161. Several conserved domains are absent from C. elegans, whereas the previously identified CES-2 binding sites are absent from the other species. Currently, we are creating
lin-48::gfp reporter transgenes for each species to observe the gene expression patterns. Further experiments with these transgenes will allow us to test whether the differences between C. elegans and the other species result from a loss of repressor elements or gain of activator elements in the C. elegans gene. (1)X. Wang and H. M. Chamberlin (2002) Genes & Development 16: 2345-2349.
-
Kanzaki, Natsumi, Hoshi, Yuki, Kumagai, Ryohei, Sugimoto, Asako, Kikuchi, Taisei, Namai, Satoshi, Tsuyama, Kenji
[
International Worm Meeting,
2017]
Caenorhabditis sp. 34 is a sister species of C. elegans recently isolated from the syconia of the fig Ficus septica on Ishigaki Island, Japan (see abstract by T. Kikuchi, et al.). C. sp. 34 is gonochoric and shares typological key characters with other Elegans supergroup species, but strikingly, adults are nearly twice as long as C. elegans. The optimal culture temperature for C. sp. 34 is significantly higher (27 deg C) than that of C. elegans (20 deg C). Young adult males and females tend to form clumps, and Dauer larvae are rarely observed in laboratory culture conditions. Recently the C. sp. 34 genome assembly was produced into six chromosomes (see abstract by T. Kikuchi, et al.). The marked differences from C. elegans in morphology, behaviors and ecology, and the availability of the complete genome sequence make C. sp. 34 highly attractive for comparative and evolutionary studies. To make C. sp. 34 genetically tractable, we have been developing genetic and molecular techniques and tools. Stable transgenic lines of C. sp.34 could be obtained by microinjecting marker plasmids commonly used in C. elegans, although the efficiency was lower than that in C. elegans. Both soaking and feeding RNAi was as effective as in C. elegans. A panel of antibodies against C. elegans proteins successfully recognized expected structures in C. sp. 34 by immunofluorescence. Thus, many of the rich genetic and molecular resources for C. elegans can be directly used for C. sp. 34 studies. We well present some of the comparative analyses of gene functions regarding the body size, germ cell formation and sex determination.