-
[
2017]
During the last two decades, there has been an explosion of research pertaining to the molecular mechanisms that allow for organisms to detect different stimuli, an essential feature for their survival. Among these mechanisms, living beings need to be able to respond to different temperatures as well as chemical and physical stimuli.Thermally activated ion channels were proposed to be present in sensory neurons in the 1980s, but it was not until 1997 that a heat- and capsaicin- activated ion channel, TRPV1, was cloned and its function described in detail. This groundbreaking discovery led to the identification and characterization of several more proteins of the family of Transient Receptor Potential (TRP) ion channels.Intensive research has provided us with the atomic structures of some of these proteins, as well as understanding of their physiological roles, both in normal and pathological conditions. With chapters contributed by renowned experts in the field, Neurobiology of TRP Channels contains a state-of-the-art overview of our knowledge of TRP channels, ranging from structure to their functions in organismal physiology.
-
[
2011]
In 1993, the genetic mutation responsible for Huntington's disease (HD) was identified. Considered a milestone in human genomics, this discovery has led to nearly two decades of remarkable progress that has greatly increased our knowledge of HD, and documented an unexpectedly large and diverse range of biochemical and genetic perturbations that seem to result directly from the expression of the mutant huntingtin gene. Neurobiology of Huntington's Disease: Applications to Drug Discovery presents a thorough review of the issues surrounding drug discovery and development for the treatment of this paradigmatic neurodegenerative disease. Drawing on the expertise of key researchers in the field, the book discusses the basic neurobiology of Huntington's disease and how its monogenic nature confers enormous practical advantages for translational research, including the creation of robust experimental tools, models, and assays to facilitate discovery and validation of molecular targets and drug candidates for HD. Written to support future basic research as well as drug development efforts, this volume:Covers the latest research approaches in genetics, genomics, and proteomics, including high-throughput and high-content screening. Highlights advances in the discovery and development of new drug therapies for neurodegenerative disorders. Examines the practical realities of preclinical testing, clinical testing strategies, and, ultimately, clinical usage. While the development of effective drug treatments for Huntington's disease continues to be tremendously challenging, a highly interactive and cooperative community of researchers and clinical investigators now brings us to the threshold of potential breakthroughs in the quest for therapeutic agents. The impressive array of drug discovery resources outlined in the text holds much promise for treating this devastating disease, providing hope to long-suffering Huntington's disease patients and their families.
-
[
2006]
For the first time world-leading experts in the area of cellular signaling have joined to the production of a book on Smad signal transduction. Smads are the principal intracellular effectors of TGF-b family members that control numerous cellular responses with critical roles in development and in tissue homeostasis. In a series of 22 cutting-edge chapters forward looking reviews of Smads are provided that cover their discovery, evolution, role in development, mechanism of action and regulation, and how deregulation in Smad signalling contributes to human diseases. Written for an audience with basic understanding of molecular and cell biology, this volume provides an in-depth review of a rapidly developing field and extensive cross-references between chapters are provided. This book will be of particular interest to basic and applied biomedical researchers (students, post-docs or group leaders) with desire to understand the principles of cell-cell communication and mechanisms by which signaling pathways and gene programs control cell proliferation and differentiation, and how this knowledge may come to be applied in the clinic.
-
[
2006]
Bringing together the latest information into one easily accessible resource, The Dynamic Synapse: Molecular Methods in Ionotropic Receptor Biology explores the diverse tools and technologies used to study synaptic processes. Written by world-renowned leaders in the field, the book delineates newly developed techniques, methods, and conceptual advances used for studying neurotransmitter receptors and other synaptic proteins. A broad array of molecular, biochemical, imaging, and electrophysiological approaches for studying the biology of synapses are described. Specific topics include the use of proteomics to study synaptic protein complexes, the development of phosphorylation state-specific antibodies, post-genomic tools applied to the study of synapses, and RNA interference in neurons. In addition, several chapters focus on methods for gene and protein delivery into neuronal tissue. The use of biochemical, electrophysiological, and optical tagging techniques to study the movement and membrane trafficking of neurotransmitter receptors in the membranes of live nerve cells are also discussed. To complement these approaches, the application of state-of-the-art approaches for achieving long-term alterations in the genetic complement of neurons in vivo using viral vectors or homologous recombinations of ES cells is also described.
-
[
2009]
With contributions from more than 40 field specialists, Methods of Behavior Analysis in Neuroscience reflects six years of updates to its first bestselling edition and elucidates new behavioral approaches that are quickly becoming field standards. This second edition features new material on the relevance of transgenic mouse models for Alzheimer's disease, behavioral methods for assessing the cognitive impairment associated with major psychotic disorders, the revival of the scopolamine reversal model for assessing the clinical relevance of new AD drugs, and new approaches to assessing the cognitive impairment in aged mice.
-
[
1997]
The urgency and importance of properly conducting a risk assessment, and all the various attributes of the assessment, will remain a significant issue for years to come. STP 1317 explores the use of modeling in developing risk assessments for a variety of environmental situations, including human-health assessments, site-specific assessments, and ecosystem-level assessments. 32 peer-reviewed papers examine several aspects to consider when conducting a risk assessment, including: When is Risk Assessment the Right Tool?, Communication of Risk Assessment, Model Selection and Problem Analysis, Data Quality and Uncertainty
-
[
2007]
TRP ion channels were first described in Drosophila melanogaster in 1989 and in mammals several years later. In 1997, TRPV1, a member of the TRP channel superfamily (now with more than 60 members in vertebrates and invertebrates but not in bacteria and plants), was described to respond to the pungent ingredients of hot pepper, then named capsaicin receptor. Ever since we have witnessed an explosion of activity in this field of scientific inquiry for obvious reasons. TRP ion channels are critical elements in signal transduction of cellular signaling cascades and of neurosensory processes, which are involved in all five senses. This book, TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades presents 31 chapters written by researchers who have made these key discoveries, such as Dr. Lutz Birnbaumer who discovered mammalian TRP channels, and who continues to conduct TRP ion channel research at the cutting edge of this hyperdynamic area. Because of the burgeoning nature of the field, this book does not represent an all-comprehensive view on TRP channel biology. However, it does shed light on selected topics of outstanding interest in the TRP arena, such as signal transduction in axonal pathfinding, and vascular, renal, auditory, and nociceptive functioning, to name a few, and the spotlight is cast by an international cast of outstanding chapter authors.
-
[
2005]
The rapidly growing cache of knowledge, which has to a considerable extent been generated by the authors themselves, has not only provided us with new, detailed insights into the function of mechanosensitivity in diverse tissues and organs, but has also displayed the potential therapeutic possibilities that arise from this understanding.
-
[
2010]
The common belief is that human smell perception is much reduced compare to other mammals, so that whatever abilities are uncovered and investigated in animal research would have little significance for humans. However, new evidence from a variety of sources indicates this traditional view is likely overly simplistic. The Neurobiology of Olfaction provides a thorough analysis of the state-of-the-science in olfactory knowledge and research, reflecting the growing interest in the field. Authors from some of the most respected laboratories in the world explore various aspects of olfaction, including genetics, behavior, olfactory systems, odorant receptors, odor coding, and cortical activity. Until recently, almost all animal research in olfaction was carried out on orthonasal olfaction (inhalation). It is only in recent years, especially in human flavor research, that evidence has begun to be obtained regarding the importance of retronasal olfaction (exhalation). These studies are beginning to demonstrate that retronasal smell plays a large role in human behavior. Highlighting common principles among various species-including humans, insects, Xenopus laevis (African frog), and Caenorhabditis elegans (nematodes)-this highly interdisciplinary book contains chapters about the most recent discoveries in odor coding from the olfactory epithelium to cortical centers. It also covers neurogenesis in the olfactory epithelium and olfactory bulb. Each subject-specific chapter is written by a top researcher in the field and provides an extensive list of reviews and original articles for students and scientists interested in further readings.
-
[
2003]
This is the story of how three men won the Nobel Prize for their research on the humble nematode worm C. elegans; how their extraordinary discovery led to the sequencing of the human genome; how a global multibillion-dollar industry was born; and how the mysteries of life were revealed in a tiny, brainless worm.