-
Du, A., Li, Z., Fang-Yen, C., Kassouni, A., Fouad, A. D., Teng, C., Bhirgoo, P. D.
[
International Worm Meeting,
2019]
C. elegans' small size and manipulability make it an ideal candidate for automation technologies. Numerous automated methods have been developed for handling, imaging, and sorting worms using microfluidics and flow cells. Common to these methods is a requirement that the worms be handled in liquid, which requires special preparation and limits the phenotypes that can be selected for. To our knowledge, no automated method exists to handle worms on agar plates normally used for C. elegans. Here, we describe a worm picking robot capable of transferring worms on standard worm plates using methods similar to those used for manual worm picking. The robot consists of a motorized 3D gantry positioned above a tray of agar plates. The gantry contains a camera to view the plates and a motorized pick than can be actuated linearly or rotationally. Custom software moves the gantry above a requested plate, removes the lid using a vacuum interface, identifies worms on the plate, and then gently lowers the bacteria-coated pick to the worm by capacitive detection of contact between the pick and the agar surface. To sterilize the pick before and after use, a heating coil is extended to cover the pick tip and activated. We demonstrate that our system can identify and autonomously pick L4 and adult animals and safely transfer them to different plates. We developed a scripting language that allows us to coordinate multistep procedures, such as identifying and transferring worms with a specific behavioral, morphological, or fluorescence phenotypes, and setting up genetic crosses. By automating most worm pushing operations, the system will both increase the productivity of researchers during routine experiments and enable experiments that would be impractical using conventional methods.
-
De La Torre, M., Liu, A., De Abreu, C., Xu, J., Hayden, J., Teng, C., Patankar, S., Fang-Yen, C., Churgin, M. A., Fouad, A. D.
[
International Worm Meeting,
2019]
C. elegans is a powerful model for investigating the biology of aging. Traditional methods for observing worm aging are slow and dependent on manual observation and manipulation. Our group previously developed an automated multi-well platform (WorMotel) to assay longitudinal C. elegans aging phenotypes of individually isolated worms. Although the WorMotel greatly reduced the amount of manual labor needed to perform aging experiments, scaling of experiments to thousands of conditions for genetic or compound screen is difficult due to the need for manual fabrication of devices and relatively small (240) number of animals per plate. To address these limitations, we developed a complementary method, the Worm Collective Activity Monitoring Platform (WormCamp), which assays aging by monitoring the decline of collective activity of C. elegans populations cultured in standard 24-well plates. To assay the worm populations' aging characteristics, we define a metric based on time required for the cumulative activity distribution for each well to reach a certain fraction of the total cumulative activity. Using validation data derived from WorMotel experiments, we show that this metric provides accurate estimates of lifespan and healthspan. To scale to a large number of conditions, we developed a custom robotic imaging system and software capable of real-time monitoring of lifespan and healthspan in thousands of populations simultaneously. The system consists of a camera and illuminators mounted on a 3D motorized stage positioned above an array of about 100 multi-well plates. The system serially records image sequences from each plate, illuminating it briefly with blue light to stimulate worm activity. We are using the automated system to conduct a whole-genome RNAi screen for genetic interventions that cause changes in lifespan and/or healthspan. The WormCamp method is complementary to the WorMotel method. Since it operates at a population level, the WormCamp provides information on aging with much less detail compared to the WorMotel, but is higher in throughput due to the larger number of animals per plate and the use of standard 24-well plates.
-
[
J Appl Glycosci (1999),
2019]
D-Allose (D-All), C-3 epimer of D-glucose, is a rare sugar known to suppress reactive oxygen species generation and prevent hypertension. We previously reported that D-allulose, a structural isomer of D-All, prolongs the lifespan of the nematode Caenorhabditis elegans. Thus, D-All was predicted to affect longevity. In this study, we provide the first empirical evidence that D-All extends the lifespan of C. elegans. Lifespan assays revealed that a lifespan extension was induced by 28 mM D-All. In particular, a lifespan extension of 23.8 % was achieved (p< 0.0001). We further revealed that the effects of D-All on lifespan were dependent on the insulin gene
daf-16 and the longevity gene
sir-2.1, indicating a distinct mechanism from those of other hexoses, such as D-allulose, with previously reported antiaging effects.
-
[
Biochim Biophys Acta Proteins Proteom,
2020]
d-Aspartate oxidase (DDO) is a flavin adenine dinucleotide (FAD)-containing flavoprotein that stereospecifically acts on acidic D-amino acids (i.e., free d-aspartate and D-glutamate). Mammalian DDO, which exhibits higher activity toward d-aspartate than D-glutamate, is presumed to regulate levels of d-aspartate in the body and is not thought to degrade D-glutamate in vivo. By contrast, three DDO isoforms are present in the nematode Caenorhabditis elegans, DDO-1, DDO-2, and DDO-3, all of which exhibit substantial activity toward D-glutamate as well as d-aspartate. In this study, we optimized the Escherichia coli culture conditions for production of recombinant C. elegans DDO-1, purified the protein, and showed that it is a flavoprotein with a noncovalently but tightly attached FAD. Furthermore, C. elegans DDO-1, but not mammalian (rat) DDO, efficiently and selectively degraded D-glutamate in addition to d-aspartate, even in the presence of various other amino acids. Thus, C. elegans DDO-1 might be a useful tool for determining these acidic D-amino acids in biological samples.
-
[
Bioorg Med Chem Lett,
2016]
Biological activities of unusual monosaccharides (rare sugars) have largely remained unstudied until recently. We compared the growth inhibitory effects of aldohexose stereoisomers against the animal model Caenorhabditis elegans cultured in monoxenic conditions with Escherichia coli as food. Among these stereoisomers, the rare sugar d-arabinose (d-Ara) showed particularly strong growth inhibition. The IC50 value for d-Ara was estimated to be 7.5mM, which surpassed that of the potent glycolytic inhibitor 2-deoxy-d-glucose (19.5mM) used as a positive control. The inhibitory effect of d-Ara was also observed in animals cultured in axenic conditions using a chemically defined medium; this excluded the possible influence of E. coli. To our knowledge, this is the first report of biological activity of d-Ara. The d-Ara-induced inhibition was recovered by adding either d-ribose or d-fructose, but not d-glucose. These findings suggest that the inhibition could be induced by multiple mechanisms, for example, disturbance of d-ribose and d-fructose metabolism.
-
[
PLoS One,
2013]
The manner in which the nervous system regulates animal behaviors in natural environments is a fundamental issue in biology. To address this question, C. elegans has been widely used as a model animal for the analysis of various animal behaviors. Previous behavioral assays have been limited to two-dimensional (2-D) environments, confining the worm motion to a planar substrate that does not reflect three-dimensional (3-D) natural environments such as rotting fruits or soil. Here, we develop a 3-D worm tracker (3DWT) for freely moving C. elegans in 3-D environments, based on a stereoscopic configuration. The 3DWT provides us with a quantitative trajectory, including the position and movement direction of the worm in 3-D. The 3DWT is also capable of recording and visualizing postures of the moving worm in 3-D, which are more complex than those in 2-D. Our 3DWT affords new opportunities for understanding the nervous system function that regulates animal behaviors in natural 3-D environments.
-
Ma T, Duan M, Wang G, Yin Q, Zhou J, Tian F, Yang C, Zhou H, Wang X, Zhang F, Zhang J
[
Nat Cell Biol,
2022]
D-2-Hydroxyglutarate (D-2HG) is an -ketoglutarate-derived mitochondrial metabolite that causes D-2-hydroxyglutaric aciduria, a devastating developmental disorder. How D-2HG adversely affects mitochondria is largely unknown. Here, we report that in Caenorhabditis elegans, loss of the D-2HG dehydrogenase DHGD-1 causes D-2HG accumulation and mitochondrial damage. The excess D-2HG leads to a build-up of 3-hydroxypropionate (3-HP), a toxic metabolite in mitochondrial propionate oxidation, by inhibiting the 3-HP dehydrogenase HPHD-1. We demonstrate that 3-HP binds the MICOS subunit MIC60 (encoded by
immt-1) and inhibits its membrane-binding and membrane-shaping activities. We further reveal that dietary and gut bacteria affect mitochondrial health by modulating the host production of 3-HP. These findings identify a feedback loop that links the toxic effects of D-2HG and 3-HP on mitochondria, thus providing important mechanistic insights into human diseases related to D-2HG and 3-HP.
-
[
J Nat Med,
2008]
No anthelmintic sugars have yet been identified. Eight ketohexose stereoisomers (D- and L-forms of psicose, fructose, tagatose and sorbose), along with D-galactose and D-glucose, were examined for potency against L1 stage Caenorhabditis elegans fed Escherichia coli. Of the sugars, D-psicose specifically inhibited the motility, growth and reproductive maturity of the L1 stage. D-Psicose probably interferes with the nematode nutrition. The present results suggest that D-psicose, one of the rare sugars, is a potential anthelmintic.
-
[
Bioorg Med Chem Lett,
2019]
The biological activities of deoxy sugars (deoxy monosaccharides) have remained largely unstudied until recently. We compared the growth inhibition by all 1-deoxyketohexoses using the animal model Caenorhabditis elegans. Among the eight stereoisomers, 1-deoxy-d-allulose (1d-d-Alu) showed particularly strong growth inhibition. The 50% inhibition of growth (GI<sub>50</sub>) concentration by 1d-d-Alu was estimated to be 5.4mM, which is approximately 10 times lower than that of d-allulose (52.7mM), and even lower than that of the potent glycolytic inhibitor, 2-deoxy-d-glucose (19.5mM), implying that 1d-d-Alu has a strong growth inhibition. In contrast, 5-deoxy- and 6-deoxy-d-allulose showed no growth inhibition of C. elegans. The inhibition by 1d-d-Alu was alleviated by the addition of d-ribose or d-fructose. Our findings suggest that 1d-d-Alu-mediated growth inhibition could be induced by the imbalance in d-ribose metabolism. To our knowledge, this is the first report of biological activity of 1d-d-Alu which may be considered as an antimetabolite drug candidate.
-
Yousuke Seida, Kazuhiro Maeda, Tomonori Kawata, Masumi Katane, Hiroyuki Kobuna, Takao Inoue, Yasuaki Saitoh, Hiroyuki Arai, Yasuhito Nakagawa, Masae Sekine, Taro Sakamoto, Hiroshi Homma, Takemitsu Furuchi
[
East Asia Worm Meeting,
2010]
Among free D-amino acids existing in living organisms, D-serine (D-Ser) and D-aspartate (D-Asp) are the most actively studied. D-Ser has been proposed as a neuromodulator that regulates L-glutamate-mediated activation of the N-methyl-D-Asp (NMDA) receptor by acting as a co-agonist. On the other hand, several lines of evidence suggest that D-Asp plays important roles in regulating developmental processes, hormone secretion and steroidogenesis. D-Amino acid oxidase (DAO) and D-Asp oxidase (DDO) are known as stereospecific degradative enzymes that catalyze the oxidative deamination of D-amino acids. DAO displays broad substrate specificity and acts on several neutral and basic D-amino acids, while DDO is highly specific for acidic D-amino acids. DAO and DDO are presumed to regulate endogenous D-Ser and D-Asp levels, respectively, as well as mediate the elimination of accumulated exogenous D-amino acids in various organs. Previously, we demonstrated that nematode Caenorhabditis elegans, a multicellular model animal has at least one active DAO gene and three active DDO genes, while it had been thought that most organisms bear only one copy of each DAO and DDO gene. In addition, our previous study revealed that the spatiotemporal distributions of these enzymes in the body of C. elegans are different from one another. In this study, to elucidate the physiological roles of the C. elegans DAO and DDOs, we characterized several phenotypes of four C. elegans mutants in which each gene is partially deleted and inactivated. We also determined free D-amino acid contents in several worm samples using high-performance liquid chromatography (HPLC) techniques. We will report the phenotypes of the C. elegans mutants in comparison with those of wild-type C. elegans, as well as alterations in D-amino acid levels within the body.