-
Munoz-Ollero P, Navarro-Hortal MD, Esteban-Munoz A, Sanchez-Gonzalez C, Romero-Marquez JM, Tutusaus K, Battino M, Giampieri F, Quiles JL, Forbes-Hernandez TY, Jimenez-Trigo V, Llopis J, Rivas-Garcia L
[
Food Funct,
2022]
Alzheimer's is a chronic degenerative disease of the central nervous system considered the leading cause of dementia in the world. It is characterized by two etiopathological events related to oxidative stress: the aggregation of β-amyloid peptide and the formation of neurofibrillary tangles of hyperphosphorylated Tau protein in the brain. The incidence of this disease increases with age and has been associated with inadequate lifestyles. Some natural compounds have been shown to improve the hallmarks of the disease. However, despite its potential, there is no scientific evidence about Manuka honey (MH) in this regard. In the present work we evaluated the effect of MH on the toxicity induced by Aβ aggregation and Tau in a Caenorhabditis elegans model. Our results demonstrated that MH was able to improve indicators of oxidative stress and delayed Aβ-induced paralysis in the AD model CL4176 through HSP-16.2 and SKN-1/NRF2 pathways. Nevertheless, its sugar content impaired the indicators of locomotion (an indicator of tau neurotoxicity) in both the transgenic strain BR5706 and in the wild-type N2 worms.
-
[
J Med Chem,
1992]
The design and synthesis of a series of avermectin affinity probes used in the identification and purification of the avermectin binding proteins is described. These modified avermectins fall into two design classes: ligands to covalently modify specific avermectin binding proteins [an 125I-labeled aryl azide photoprobe (15) and a tritiated aziridine analog (6)] and ligands for affinity chromatography applications [three biotinylated compounds (10, 12, and 13) and one resin-bound derivative (9)]. The binding affinities of these compounds for the Caenorhabditis elegans avermectin binding protein is presented as well as their biological activities against C. elegans and Artemia salina.
-
[
Biochem Biophys Res Commun,
2001]
To date, 9 FMRFamide-related peptides (FaRPs) have been structurally characterised from Caenorhabditis elegans. Radioimmunometrical screening of an ethanolic extract of C. elegans revealed the presence of two additional FaRPs that were purified by reverse-phase HPLC and subjected to Edman degradation analysis and gas-phase sequencing. Unequivocal primary structures for the two FaRPs were determined as Ala-Ala-Asp-Gly-Ala-Pro-Leu-Ile-Arg-Phe-NH2 and Ser-Val-Pro-Gly-Val-Leu-Arg-Phe-NH2. Using MALDI-TOF mass. spectrometry, the molecular masses of the peptides were found to be 1032 Da (MH) and 875 Da (MH)(+), respectively. Two copies of AADGAPLIRFamide are predicted to be encoded on the precursor gene termed
flp-13, while one copy of SVPGVLRFamide is located on
flp-18. Synthetic replicates of the peptides were tested on Ascaris suum somatic muscle to assess bioactivity. ADDGAPLIRFamide had inhibitory effects on A. suum muscle strips, which occurred over a range of concentrations from a threshold for activity of 10 nM to 10 muM. SVPGVLRFamide was excitatory on A. suum somatic musculature from a threshold concentration for activity of 1 nM to 10 muM. The inhibitory and excitatory effects of AADGAPLIRFamide and SVPGVLRFamide, respectively, were the same for dorsal and ventral muscle strips as well as innervated and denervated preparations, suggesting that these physiological effects are not nerve cord dependent. Addition of ADDGAPLIRFamide (10 muM) to muscle strips preincubated in high-K+ and -Ca2+-free medium resulted in a normal inhibitory response. Peptide addition to muscle strips preincubated in Cl--free medium showed no inhibitory response, suggesting that the inhibitory response of the peptide may be chloride mediated. A normal excitatory response was noted following the addition of 10 muM SVPGVLRFamide to muscle strips preincubated in high-K+, Ca2+- and Cl--free media.
-
[
Biochem Biophys Res Commun,
1998]
To date, seven FMRFamide-related peptides (FaRPs) have been structurally characterized from C. elegans, of which one is structurally identical to the parasitic nematode peptide AF2 (KHEYLRFamide). The other six FaRPs have so far been identified in free-living forms only. In the present study an additional FaRP was isolated and structurally characterized from an ethanolic extract of C. elegans. The extract was screened using a C-terminally directed FaRP antiserum, and the FMRFamide-immunoreactive peptide purified to homogeneity using HPLC. Approximately 80 pmol of the peptide was subjected to Edman degradation and the unequivocal primary structure of the K7-amide, KSAYMRFamide (PF3/AF8) was determined following a single gas-phase sequencing run. The molecular mass of the peptide was determined using a MALDI-TOF mass spectrometer and was found to be 919 (MH+), which is in agreement with the theoretical mass of C-terminally amidated PF3. A new flp-gene, designated
flp-6, has recently been identified which encodes six copies of KSAYMRFamide (PF3/AF8).
-
[
Mol Brain,
2021]
Aim: Experimental animals, such as non-human primates (NHPs), mice, Zebrafish, and Drosophila, are frequently employed as models to gain insights into human physiology and pathology. In developmental neuroscience and related research fields, information about the similarities of developmental gene expression patterns between animal models and humans is vital to choose what animal models to employ. Here, we aimed to statistically compare the similarities of developmental changes of gene expression patterns in the brains of humans with those of animal models frequently used in the neuroscience field.Methods: The developmental gene expression datasets that we analyzed consist of the fold-changes and P values of gene expression in the brains of animals of various ages compared with those of the youngest postnatal animals available in the dataset. By employing the running Fisher algorithm in a bioinformatics platform, BaseSpace, we assessed similarities between the developmental changes of gene expression patterns in the human (Homo sapiens) hippocampus with those in the dentate gyrus (DG) of the rhesus monkey (Macaca mulatta), the DG of the mouse (Mus musculus), the whole brain of Zebrafish (Danio rerio), and the whole brain of Drosophila (D. melanogaster).Results: Among all possible comparisons of different ages and animals in developmental changes in gene expression patterns within the datasets, those between rhesus monkeys and mice were highly similar to those of humans with significant overlap P-value as assessed by the running Fisher algorithm. There was the highest degree of gene expression similarity between 40-59-year-old humans and 6-12-year-old rhesus monkeys (overlap P-value = 2.1 10- 72). The gene expression similarity between 20-39-year-old humans and 29-day-old mice was also significant (overlap P = 1.1 10- 44). Moreover, there was a similarity in developmental changes of gene expression patterns between 1-2-year-old Zebrafish and 40-59-year-old humans (Overlap P-value = 1.4 10- 6). The overlap P-value of developmental gene expression patterns between Drosophila and humans failed to reach significance (30 days Drosophila and 6-11-year-old humans; overlap P-value = 0.0614).Conclusions: These results indicate that the developmental gene expression changes in the brains of the rhesus monkey, mouse, and Zebrafish recapitulate, to a certain degree, those in humans. Our findings support the idea that these animal models are a valid tool for investigating the development of the brain in neurophysiological and neuropsychiatric studies.
-
[
Biochem Biophys Res Commun,
1995]
Numerous FMRF amide-related peptides (FaRPs) have been isolated and sequenced from extracts of free-living and parasitic nematodes. The most abundant FaRP identified in ethanolic/methanolic extracts of the parasitic forms, Ascaris suum and Haemonchus contortus and from the free-living nematode, Panagrellus redivivus, was KHEYLRF amide (AF2). Analysis of the nucleotide sequences of cloned FaRP-precursor genes from C. elegans and, more recently, Caenorhabditis vulgaris identified a series of related FaRPs which did not include AF2. An acid-ethanol extract of Caenorhabditis elegans was screened radioimmunometrically for the presence of FaRPs using a C-terminally directed FaRP antiserum. Approximately 300 pmols of the most abundant immunoreactive peptide was purified to homogeneity and 30 pmols was subjected to Edman degradation analysis and gas-phase sequencing. The unequivocal primary structure of the heptapeptide, Lys-His-Glu-Tyr-Leu-Arg-Phe-NH2 (AF2) was determined following a single gas-phase sequencing run. The molecular mass of the peptide was determined using a time-of-flight mass spectrometer and was found to be 920 (MH(+))(-), which was consistent with the theoretical mass of C-terminally amidated AF2. These results indicate that C. elegans possesses more than one FaRP gene.
-
[
Biochem Biophys Res Commun,
1999]
To date, 53 peptides with C-terminal RFamides have been identified by the genome sequencing project in the nematode, Caenorhabditis elegans. In this study the FMRFamide-related peptide (FaRP) KPSFVRFamide (879.90 Da [MH]+) was structurally characterized from extracts of the nematode, Caenorhabditis elegans. Two copies of KPSFVRFamide are encoded by a gene designated
flp-9. RT-PCR identified a single cDNA product which was confirmed as
flp-9 by sequence determination. Flp-9 cDNA was isolated from larval stages of C. elegans but was not detected in adult worms, indicating that its expression is may be developmentally regulated. KPSFVRFamide displays sequence homology to the nematode peptide, KPNFIRFamide (PF4). The physiological effects of KPSFVRFamide, PF4 and the chimeras, KPNFVRFamide and KPSFIRFamide, were measured on body wall muscle and the vagina vera of the parasitic nematode, Ascaris suum. KPNFVRFamide and KPNFIRFamide had Cl--dependent inhibitory activity on innervated and denervated muscle-preparations, whereas KPSFVRFamide and KPSFIRFamide did not elicit a detectable physiological effect. Although all 4 peptides had inhibitory effects on the vagina vera, KPSFVRFamide and KPSFIRFamide (threshold, >/=0.1 microM) were less potent than KPNFVRFamide and KPNFIRFamide (threshold, >/=10 nM).
-
[
CBE Life Sci Educ,
2008]
The skill set required of biomedical researchers continues to grow and evolve as biology matures as a natural science. Science necessitates creative yet critical thinking, persuasive communication skills, purposeful use of time, and adeptness at the laboratory bench. Teaching these skills can be effectively accomplished in an inquiry-based, active-learning environment at a primarily undergraduate institution. Cell Biology Techniques, an upper-level cell biology laboratory course at St. John Fisher College, features two independent projects that take advantage of the biology of the nematode Caenorhabditis elegans, a premier yet simple model organism. First, students perform a miniature epigenetic screen for novel phenotypes using RNA interference. The results of this screen combined with literature research direct students toward a singe gene that they attempt to subclone in the second project. The biology of the chosen gene/protein also becomes an individualized focal point with respect to the content of the laboratory. Progress toward course goals is evaluated using written, oral, and group-produced assignments, including a concept map. Pre- and postassessment indicates a significant increase in the understanding of broad concepts in cell biological research.
-
[
Bioinformation,
2009]
Expressed sequence tags (ESTs) are an effective approach for discovery of novel genes. In the current study, approximately 250 ESTs of the cattle parasitic nematode Setaria digitata were examined and a cDNA clone identified whose coding sequence could not be functionally annotated by searching over publicly available genome, protein, EST and STS databases. Here, we report the extensive characterization of this ORF (UP) and its homologues using a bioinformatic approach. Uncharacterized protein (SDUP) of S. digitata consists of 204 amino acids with a predicted molecular weight and isoelectric point of 22.8KDa and 9.94, respectively. A search carried out using SDUP over nucleotide, EST and protein databases at NCBI, NEMBASE3 and Parasite Genome Database (PGD) identified homologous counterparts from the human parasitic nematodes Wuchereria bancrofti (WB), Brugia malayi (BM), Onchocerca volvulus (OV), the mouse filarial worm Litomosoides sigmodontis (LS), swine parasitic nematodes Ascaris suum (AS) and diverged counterparts from the plant parasitic nematode Meloidogyne hapla (MH) and free living nematodes Caenorhabditis elegans (CE) and Caenorhabditis briggsae (CB). Phylogenetic analyses revealed the UPs to be undergoing divergent evolution. A search of the ESTs at PGD showed that UP is expressed in all the stages of BM. Secondary structure analyses of multiply-aligned sequences of homologues using Jpred server indicated UPs to be rich in beta-pleated structures. TMMHH server and beta barrel finder programme indicated, UPs to be neither transmembrane or beta barrels proteins but are likely to be globular proteins. Further, the Motif discovery tool of MEME identified three novel potential motifs for UPS, of which only two are present in CE, CB & MH. Analyses of UPs using Signal IP, TargetP, Psort servers predicted this group of proteins to be devoid of signal peptide cleavage sites, are not mitochondrial targeting peptides but appear to be localized to the nucleus, respectively. Further analyses of the UPs using ScanProsite server for phosphorylation revealed potential sites for cAMP- and cGMP-dependent protein kinase, Protein kinase C and Casein kinase II. Putative functional analysis using ProtFun 2.1 Server indicated UPs to be nonenzymatic, growth factor like protein. Finally, collating all the information derived from bioinformatic analyses, we conclude that the UPs of nematodes are most likely to be expressed at all stages in the life cycle, localized to the nucleus, regulated by phosphorylation, rich in beta-pleated strands and are growth factor like nematode specific proteins.
-
Sternberg PW, Ansell BRE, Andrews KT, Nowell C, Chang BCH, Hofmann A, Crawford S, Korhonen PK, Baell J, Gijs MAM, Fisher GM, Young ND, Preston S, Mouchiroud L, Gasser RB, Jabbar A, Auwerx J, Davis RA, McGee SL, Cornaglia M
[
FASEB J,
2017]
As a result of limited classes of anthelmintics and an over-reliance on chemical control, there is a great need to discover new compounds to combat drug resistance in parasitic nematodes. Here, we show that deguelin, a plant-derived rotenoid, selectively and potently inhibits the motility and development of nematodes, which supports its potential as a lead candidate for drug development. Furthermore, we demonstrate that deguelin treatment significantly increases gene transcription that is associated with energy metabolism, particularly oxidative phosphorylation and mito-ribosomal protein production before inhibiting motility. Mitochondrial tracking confirmed enhanced oxidative phosphorylation. In accordance, real-time measurements of oxidative phosphorylation in response to deguelin treatment demonstrated an immediate decrease in oxygen consumption in both parasitic (Haemonchus contortus) and free-living (Caenorhabditis elegans) nematodes. Consequently, we hypothesize that deguelin is exerting its toxic effect on nematodes as a modulator of oxidative phosphorylation. This study highlights the dynamic biologic response of multicellular organisms to deguelin perturbation.-Preston, S., Korhonen, P. K., Mouchiroud, L., Cornaglia, M., McGee, S. L., Young, N. D., Davis, R. A., Crawford, S., Nowell, C., Ansell, B. R. E., Fisher, G. M., Andrews, K. T., Chang, B. C. H., Gijs, M. A. M., Sternberg, P. W., Auwerx, J., Baell, J., Hofmann, A., Jabbar, A., Gasser, R. B. Deguelin exerts potent nematocidal activity via the mitochondrial respiratory chain.