[
Biophys J,
1998]
Cyclic-nucleotide-activated, nonselective cation channels have a central role in sensory transduction. They are most likely tetramers, composed of two subunits (alpha and beta or 1 and 2), with the former, but not the latter, being able to form homomeric cyclic-nucleotide-activated channels. Identified members of this channel family now include, in vertebrates, the rod and cone channels mediating visual transduction and the channel mediating olfactory transduction, each apparently with distinct alpha- and beta-subunits. Homologous channels have also been identified in Drosophila melanogaster and Caenorhabditis elegans. By co-expressing any combination of two alpha-subunits, or alpha- and beta-subunits, of this channel family in HEK 293 cells, we have found that they can all co-assemble functionally with each other, including those from fly and nematode. This finding suggests that the subunit members so far identified form a remarkably homogeneous and conserved group, functionally and evolutionarily, with no subfamilies yet identified. The ability to cross-assemble allows these subunits to potentially generate a diversity of heteromeric channels, each with properties specifically suited to a particular cellular function.
[
Oncogene,
1999]
1q21 is frequently involved in different types of translocation in many types of cancers. Jumping translocation (JT) is an unbalanced translocation that comprises amplified chromosomal segments jumping to various telomeres. In this study, we identified a novel gene human JTB (Jumping Translocation Breakpoint) at 1q21, which fused with the telomeric repeats of acceptor telomeres in a case of JT. hJTB (human JTB) encodes a trans-membrane protein that is highly conserved among divergent eukaryotic species. JT results in a hJTB truncation, which potentially produces an hJTB product devoid of the trans-membrane domain. hJTB is located in a gene-rich region at 1q21, called EDC (Epidermal Differentiation Complex). This is the first report identifying the gene involved in unbalanced translocations at 1q21.
[
J Neurophysiol,
2015]
Although the ability to detect humidity (i.e., hygrosensation) represents an important sensory attribute in many animal species (including humans), the neurophysiological and molecular bases of such sensory ability remain largely unknown in many animals. Recently, Russell and colleagues (Russell J, Vidal-Gadea AG, Makay A, Lanam C, Pierce-Shimomura JT. Proc Natl Acad Sci USA 111: 8269-8274, 2014) provided for the first time neuromolecular evidence for the sensory integration of thermal and mechanical sensory cues which underpin the hygrosensation strategy of an animal (i.e., the free-living roundworm Caenorhabditis elegans) that lacks specific sensory organs for humidity detection (i.e., hygroreceptors). Due to the remarkable similarities in the hygrosensation transduction mechanisms used by hygroreceptor-provided (e.g., insects) and hygroreceptor-lacking species (e.g., roundworms and humans), the findings of Russell et al. highlight potentially universal mechanisms for humidity detection that could be shared across a wide range of species, including humans.