-
[
Sci China Life Sci,
2015]
Compared to proteins and RNAs, functional specificities associated with structural variations in fatty acids and lipids have been greatly underexplored. This review describes how our lab naively started to work on lipids 14 years ago, and how we have gradually overcome obstacles to address some interesting biological questions by combining genetics with biochemical methods on the nematode Caenorhabditis elegans. Our studies have revealed lipid variants and their metabolic pathways, in specific tissues, impact development and behaviors by regulating specific signaling events. The review also discusses the general research approach, style of lab management, and funding mechanisms that have facilitated the frequent research direction changes in the lab, including the journey into the lipid field.
-
[
Cell,
1995]
For many years developmental biologists have been trying to learn whether patterning within fields of cells is driven by graded morphogens or by sequential signaling cascades...
-
Munz C, Boya P, Santambrogio L, Debnath J, Melendez A, Galluzzi L, Jaattela M, Ballabio A, Simon HU, Gewirtz DA, Bravo-San Pedro JM, Harper JW, Murphy LO, Tavernarakis N, Chu CT, Kroemer G, Deretic V, Dikic I, Fulda S, Martens S, Cuervo AM, Reggiori F, Green DR, Kimmelman AC, Levine B, Cecconi F, Penninger JM, Johansen T, Piacentini M, Codogno P, Choi AM, Madeo F, Lopez-Otin C, Simon AK, Juhasz G, Colombo MI, Fimia GM, Martinez J, Kraft C, Ryan KM, Yue Z, Hansen M, Zhong Q, Mizushima N, Simonsen A, Baehrecke EH, Ktistakis NT, Rubinsztein DC, Scorrano L, Tooze SA, Yoshimori T, Eskelinen EL, Yuan J, Kumar S
[
EMBO J,
2017]
Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy-related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy-related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research.
-
Gradolewski D, Krawczuk M, Tojza P, Koncicki A, Ambroziak D, Redlarski G, Lewczuk B, Jakubiuk K, Jaworski J, Skarbek L, Piechocki J, Zak A
[
Biomed Res Int,
2015]
Current technologies have become a source of omnipresent electromagnetic pollution from generated electromagnetic fields and resulting electromagnetic radiation. In many cases this pollution is much stronger than any natural sources of electromagnetic fields or radiation. The harm caused by this pollution is still open to question since there is no clear and definitive evidence of its negative influence on humans. This is despite the fact that extremely low frequency electromagnetic fields were classified as potentially carcinogenic. For these reasons, in recent decades a significant growth can be observed in scientific research in order to understand the influence of electromagnetic radiation on living organisms. However, for this type of research the appropriate selection of relevant model organisms is of great importance. It should be noted here that the great majority of scientific research papers published in this field concerned various tests performed on mammals, practically neglecting lower organisms. In that context the objective of this paper is to systematise our knowledge in this area, in which the influence of electromagnetic radiation on lower organisms was investigated, including bacteria, E. coli and B. subtilis, nematode, Caenorhabditis elegans, land snail, Helix pomatia, common fruit fly, Drosophila melanogaster, and clawed frog, Xenopus laevis.
-
[
Ann N Y Acad Sci,
2006]
During the last three decades the soil nematode C. elegans has become a prominent model organism for studying aging. Initially research in the C. elegans aging field was focused on the genetics of aging and single gene mutations that dramatically increased the life span of the worm. Undoubtedly, the existence of such mutations is one of the main reasons for the popularity of the worm as model system for studying aging. However, today many different approaches are being used in the C. elegans aging field in addition to genetic manipulations that influence life span. For example, environmental manipulations such as caloric restriction and hormetic treatments, evolutionary studies, population studies, models of age-related diseases, and drug screening for compounds that extend life span are now being investigated using this nematode. This review will focus on the most recent developments in C. elegans aging research with the aim of illustrating the diversity of the field.
-
[
Int J Parasitol,
2001]
The future direction of post-genomic nematode parasitology should focus on the function of the genes that are defined by large-scale expressed sequence tag sequencing and on broader questions about the genetic basis of parasitism. Functional characterisation will require the application of high throughput technologies that have been developed in other fields, including genome mapping strategies and DNA microarray analysis. These will be greatly aided by the development and application of appropriate model organisms. It is: crucial that the field make the transition from a narrow focus on one or a few genes at a time to a focus on whole genomes in order to fully realise the potential of the expressed sequence tag and other genomic projects currently under way.
-
[
Cell Metab,
2017]
Nutrition is paramount in shaping all aspects of animal biology. In addition, the influence of the intestinal microbiota on physiology is now widely recognized. Given that dietalso shapes the intestinal microbiota, this raises the question of how the nutritional environment and microbial assemblages together influence animal physiology. This research field constitutes a new frontier in the field of organismal biology that needs to be addressed. Here we review recent studies using animal models and humans and propose an integrative framework within which to define the study of the diet-physiology-microbiota systems and ultimately link it to human health. Nutritional Geometry sits centrally in the proposed framework and offers means to define diet compositions that are optimal for individuals and populations.
-
[
Prog Mol Biol Transl Sci,
2014]
Mechanobiology is an emerging field that investigates how living cells sense and respond to their physical surroundings. Recent interest in the field has been sparked by the finding that stem cells differentiate along different lineages based on the stiffness of the cell surroundings (Engler et al., 2006), and that metastatic behavior of cancer cells is strongly influenced by the mechanical properties of the surrounding tissue (Kumar and Weaver, 2009). Many questions remain about how cells convert mechanical information, such as viscosity, stiffness of the substrate, or stretch state of the cells, into the biochemical signals that control tissue function. Caenorhabditis elegans researchers are making significant contributions to the understanding of mechanotransduction in vivo. This review summarizes recent insights into the role of mechanical forces in morphogenesis and tissue function. Examples of mechanical regulation across length scales, from the single-celled zygote, to the intercellular coordination that enables cohesive tissue function, to the mechanical influences between tissues, are considered. The power of the C. elegans system as a gene discovery and in vivo quantitative bioimaging platform is enabling an important discoveries in this exciting field.
-
[
Curr Opin Neurobiol,
2002]
Genetic approaches in flies and worms continue to dissect the intricate molecular machinery of chemical synapses. Investigations carried out in the last year provide important new insights into the development and modulation of the presynaptic active zones and postsynaptic receptor fields mediating synaptic function. Mutant screens have identified overlapping gene classes mediating synaptogenesis. The leucocyte common antigen-related receptor tyrosine phosphatase interacts with liprin in the formation of the active zone. Spectrins are essential for the spatial restriction of synaptic proteins to define active zones. Glutamate acts as a negative regulator of its cognate postsynaptic receptor to sculpt receptor field size. Finally, protein translation and degradation regulation emerge as possible key regulators of synaptic
-
[
Toxicon,
2001]
Diphtheria toxin is one of the most extensively studied and well understood bacterial toxins. Ever since its discovery in the late 1800's this toxin has occupied a central focus in the field of toxinology. In this review, I present a chronology of major discoveries that led to our current understanding of the structure and activity of diphtheria toxin.