Kapahi, Pankaj, Hubbard, Alan, Melov, Simon, Chen, Di, Gibson, Bradford W., Rogers, Aric N., Felkey, Krysta, Lithgow, Gordon, McColl, Gawain, Czerwieniec, Gregg
[
International Worm Meeting,
2011]
Reducing protein synthesis slows growth and development but can increase adult lifespan. We demonstrate that knock-down of eukaryotic translation initiation factor 4G (eIF4G), which is down-regulated during starvation, results in differential translation of genes important for growth and longevity in C. elegans. Genome-wide mRNA translation state analysis showed that inhibition of IFG-1, the C. elegans ortholog of eIF4G, results in a relative increase in ribosomal loading and translation of stress response genes. Some of these genes are required for lifespan extension when IFG-1 is inhibited and are novel determinants of longevity. Furthermore, enhanced ribosomal loading of certain mRNAs upon IFG-1 inhibition was correlated with increased mRNA length. This association was supported by changes in the proteome assayed via quantitative mass spectrometry. Our results support a role for IFG-1 in mediating the antagonistic effects on growth and somatic maintenance by modulating translation of a specific class of mRNA based on transcript length.