[
WormBook,
2007]
Heterorhabditis bacteriophora is an entomopathogenic nematode (EPN) mutually associated with the enteric bacterium, Photorhabdus luminescens, used globally for the biological control of insects. Much of the previous research concerning H. bacteriophora has dealt with applied aspects related to biological control. However, H. bacteriophora is an excellent model to investigate fundamental processes such as parasitism and mutualism in addition to its comparative value to Caenorhabditis elegans. In June 2005, H. bacteriophora was targeted by NHGRI for a high quality genome sequence. This chapter summarizes the biology of H. bacteriophora in common and distinct from C. elegans, as well as the status of the genome project.
[
WormBook,
2005]
The features that differentiate the C. elegans male from the hermaphrodite arise during postembryonic development. The major male mating structures, consisting of the blunt tail with fan and rays, the hook, the spicules and proctodeum, and the thin body, form just before the last larval molt. Male and hermaphrodite embryogenesis are similar but some essential male cell fates are already established at hatching. The male mating structures arise from three important sets of male-specific blast cells. These cells generate a total of 205 male-specific somatic cells, including 89 neurons, 36 neuronal support cells, 41 muscles, 23 cells involved in differentiating the hindgut, and 16 hypodermal cells associated with mating structures. Genetic and molecular studies have identified many genes required for male development, most of which also function in the hermaphrodite. Cell-cell interactions play a role in patterning all three of the generative tissues. Male-specific neurons, including sensory neurons of the rays, hook, post-cloacal sensilla, and spicules, differentiate at the end of the last larval stage and send out axons to make connections into the existing neuropil, greatly enlarging the posterior ganglia. The hindgut is highly differentiated to accommodate the spicules and the joining of the reproductive tract to the cloaca. A complex male-specific program generates many new muscles for copulation. The cell lineage and genetic program that gives rise to the one-armed male gonad appears to be a variation on that of the hermaphrodite.