[
Res Rep Trop Med,
2020]
Onchocerciasis is a parasitic infection caused by the filarial nematode <i>Onchocerca volvulus</i> and transmitted through the bites of black flies of the genus <i>Similium</i> that breed in rivers and streams. The impact of mass treatment with ivermectin and supplemented by vector control in some countries has changed the global scene of onchocerciasis. There has been reported progress made in elimination of onchocerciasis in central and southern American countries and in some localities in Africa. The target for elimination in the Americas has been set at 2022 while for 12 countries in Africa this is expected in 2030. This review was conducted to examine the current status of onchocerciasis elimination at the global level and report on progress made. Literature searches were made through PubMed, articles in English or English abstracts, reports and any other relevant articles related to the subject. The global burden of onchocerciasis is progressively reducing and is no longer a public health problem in some regions. However, programs are challenged with a range of issues: cross-border transmission, diagnostic tools, <i>Loa loa</i> co-endemicity, limited workforce in entomology and maintaining enthusiasm among community drug distributors. More concerted effort using appropriate tools is required to overcome the challenges.
[
Proc Natl Acad Sci U S A,
2011]
What fascinates us about animal behavior is its richness and complexity, but understanding behavior and its neural basis requires a simpler description. Traditionally, simplification has been imposed by training animals to engage in a limited set of behaviors, by hand scoring behaviors into discrete classes, or by limiting the sensory experience of the organism. An alternative is to ask whether we can search through the dynamics of natural behaviors to find explicit evidence that these behaviors are simpler than they might have been. We review two mathematical approaches to simplification, dimensionality reduction and the maximum entropy method, and we draw on examples from different levels of biological organization, from the crawling behavior of Caenorhabditis elegans to the control of smooth pursuit eye movements in primates, and from the coding of natural scenes by networks of neurons in the retina to the rules of English spelling. In each case, we argue that the explicit search for simplicity uncovers new and unexpected features of the biological system and that the evidence for simplification gives us a language with which to phrase new questions for the next generation of experiments. The fact that similar mathematical structures succeed in taming the complexity of very different biological systems hints that there is something more general to be discovered.
[
Hum Reprod Update,
2014]
BACKGROUND: Traditional studies focused on DNA as the heritable information carrier that passes the phenotype from parents to offspring. However, increasing evidence suggests that information, that is independent of the DNA sequence, termed epigenetic information, can be inherited between generations. Recently, in our lab, we found that prediabetes in fathers increases the susceptibility to diabetes in offspring through gametic cytosine methylation changes. Paternal prediabetes changed overall methylation patterns in sperm, and a large portion of differentially methylated loci can be transmitted to pancreatic islets of offspring up to the second generation. In this review, we survey the extensive examples of environmentally induced epigenetic inheritance in various species, ranging from Caenorhabditis elegans to humans. We focus mainly on elucidating the molecular basis of environmental epigenetic inheritance through gametes, which is an emerging theme and has important implications for explaining the prevalence of obesity, type 2 diabetes and other chronic non-genetic diseases, which is also important for understanding the influence of environmental exposures on reproductive and overall health in offspring. METHODS: For this review, we included relevant data and information obtained through a PubMed database search for all English language articles published up to August 2014 which included the term 'environmental epigenetic inheritance' and 'transgenerational epigenetic inheritance'. We focused on research papers using animal models including Drosophila, C. elegans, mouse and rat. Human data were also included. RESULTS: Evidence from animal models suggests that environmental epigenetic inheritance through gametes exists in various species. Extensive molecular evidence suggests that epigenetic information carriers including DNA methylation, non-coding RNAs and chromatin proteins in gametes play important roles in the transmission of phenotypes from parents to offspring. CONCLUSIONS: Given the large number of experimental evidence from various organisms, it is clear that parental environmental alterations can affect the phenotypes of offspring through gametic epigenetic alterations. This more recent thinking based on new data may have implications in explaining the prevalence of obesity, type 2 diabetes and other chronic non-genetic diseases. This also implies that, in the near future, epigenetic factors which are heritable should be regarded important in determining the risk of certain diseases. Moreover, identification of epigenetic markers in gametes (polar body or sperm) may hold great promise for predicting susceptibility to and preventing certain non-genetic diseases in offspring, as well as providing indications on parental environmental exposures.