-
[
Trends Genet,
1997]
Focused studies on model organisms with favorable features have been important for advancing many areas of biology. Nematodes have been a successful model for analyzing development. Can they also be used to study evolution? Paul Sternberg and his present and former colleagues are attempting to answer this question by studying variation of that well-described little structure, the nematode vulva. Their efforts have been well rewarded. Two recent publications extend a series of papers showing a surprising degree of evolutionary variability in vulval development among species. Could it be that comparison of nematode species will prove to be as powerful for penetrating the intimate mechanisms of evolutionary change as analysis of mutant nematodes has been to understanding mechanisms of development?
-
[
Curr Top Dev Biol,
2016]
How the synaptic connections in the nervous system are genetically encoded and formed during development remains an unsolved problem. The known connectivity of the nervous system of the nematode C. elegans provides an opportunity to search for the genes involved. The circuits for male mating behavior form a complex neural network that would seem to require a large family of molecular cell labels for pre- and postsynaptic cell recognition. It is suggested that a combinatorial code of neural cell adhesion proteins specifying the network of connections may be discovered by comparing the expression patterns of candidate genes with the pattern of connections.
-
[
Cell,
1987]
What are the respective roles in multicellular development of mechansims acting at the level of the cell and mechanisms acting at the level of the cell group? It's an old question, and one that is central to the problem of developmental biology. Even early in this century it had long been debated "whether the character of growth and morphogenesis is a cause or a result of the corresponding activities on the part of the component cells individually considered" (E.B. Wilson, The Cell in Development and Heredity, Macmillan, 1925, p. 1029). The question is now being reexamined in the nematode Caenorhabditis elegans, an organism whose embryonic and postembryonic development are easily observed. Initial studies emphasized the reproducibility and, thus, the apparent cell-autonomy of development in the animal. Little flexibility in cell division patterns or differentiation was found in blastomere isolation experiments or after microsurgery with a laser beam. More recent results, however, demonstrate that cellular interactions are more important. These new results, combined with new molecular techniques that make it possible to isolate genes defined by mutations and to reintroduce cloned genes into the germ line, open the way to a molecular analysis of developmental mechanisms that are likely to be widespread in the animal kingdom.
-
[
J Neurobiol,
2003]
Male sexual behavior is increasingly the focus of genetic study in a variety of animals. Genetic analysis in the soil roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster has lead to identification of genes and circuits that govern behaviors ranging from motivation and mate-searching to courtship and copulation. Some worm and fly genes have counterparts with related functions in higher animals and many more such correspondences can be expected. Analysis of mutations in mammals can potentially lead to insights into such issues as monogamous versus promiscuous sexual behavior and sexual orientation. Genetic analysis of sexual behavior has implications for understanding how the nervous system generates and controls a complex behavior. It can also help us to gain an appreciation of how behavior is encoded by genes and their regulatory sequences.
-
[
Int Rev Neurobiol,
2006]
-
[
Bioessays,
1992]
The C. elegans male tail is being studied as a model to understand how genes specify the form of multicellular animals. Morphogenesis of the specialized male copulatory organ takes place in the last larval stages during male development. Genetic analysis is facilitated because the structure is not necessary for male viability or for strain propagation. Analysis of developmental mutants, isolated in several functional and morphological screens, has begun to reveal how fates of cells are determined in the cell lineages, and how the specification of cell fates affects the morphology of the structure. Cytological studies in wild type and in mutants have been used to study the mechanism of pattern formation in the tail peripheral nervous system. The ultimate goal is to define the entire pathway leading to the male copulatory organ.
-
[
Wiley Interdiscip Rev Dev Biol,
2014]
Studies of the development of the Caenorhabditis elegans male have been carried out with the aim of understanding the basis of sexual dimorphism. Postembryonic development of the two C. elegans sexes differs extensively. Development along either the hermaphrodite or male pathway is specified initially by the X to autosome ratio. The regulatory events initiated by this ratio include a male-determining paracrine intercellular signal. Expression of this signal leads to different consequences in three regions of the body: the nongonadal soma, the somatic parts of the gonad, and the germ line. In the nongonadal soma, activity of the key Zn-finger transcription factor TRA-1 determines hermaphrodite development; in its absence, the male pathway is followed. Only a few genes directly regulated by TRA-1 are currently known, including members of the evolutionarily conserved, male-determining DM domain Zn-finger transcription factors. In the somatic parts of the gonad and germ line, absence of TRA-1 activity is not sufficient for full expression of the male pathway. Several additional transcription factors involved have been identified. In the germ line, regulatory genes for sperm development that act at the level of RNA in the cytoplasm play a prominent role.
-
[
Philos Trans R Soc Lond B Biol Sci,
2015]
The article 'Structure of the nervous system of the nematode Caenorhabditis elegans' (aka 'The mind of a worm') by White et al., published for the first time the complete set of synaptic connections in the nervous system of an animal. The work was carried out as part of a programme to begin to understand how genes determine the structure of a nervous system and how a nervous system creates behaviour. It became a major stimulus to the field of C. elegans research, which has since contributed insights into all areas of biology. Twenty-six years elapsed before developments, notably more powerful computers, made new studies of this kind possible. It is hoped that one day knowledge of synaptic structure, the connectome, together with results of many other investigations, will lead to an understanding of the human brain. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
-
[
Genome Res,
2000]
Whole -genome sequence comparisons between bacterial sequences are one thing, but try comparing two eukaryotic genomes, each containing tens or hundreds of millions of nucleotides. And try to do it on your desktop machine in your office or at home. That is what Kent and Zahler have tried, and the results are presented in this issue of Genome Research. The use of evolutionary conservation to unveil functional information contained within genomes is not new. In the case of the nematode, comparisons of Caenorhabditis elegans to its close relative Caenorhabditis briggsae go back as far as Emmons et al.