[
Biochem Biophys Res Commun,
2000]
We recently identified BERP as a novel RING finger protein belonging to the RBCC protein family. It contains an N-terminal RING finger, followed by a B-box zinc finger and a coiled-coil domain. BERP interacts with the tail domain of the class V myosins through a beta-propeller structure in the BERP C-terminal. To identify other proteins interacting with BERP, the yeast two-hybrid strategy was employed, using the RBCC domain as bait. Screening of a rat brain cDNA library identified alpha-actinin-4 as a specific binding partner for the N-terminus of BERP. This actinin isoform could be immunoprecipitated together with BERP from HEK 293 cells transfected with expression constructs for BERP and alpha-actinin-4. These proteins could also be colocalized immunohistochemically in the cytoplasm of differentiated PC12 cells. We suggest that BERP may anchor class V myosins to particular cell domains via its interaction with alpha-actinin-4.
[
J Biol Chem,
1999]
We have identified a novel protein (BERP) that is a specific partner for the tail domain of myosin V. Class V myosins are a family of molecular motors thought to interact via their unique C-terminal tails with specific proteins for the targeted transport of organelles. BERP is highly expressed in brain and contains an N-terminal RING finger, followed by a B-box zinc finger, a coiled-coil (RBCC domain), and a unique C-terminal beta-propeller domain. A yeast two-hybrid screening indicated that the C-terminal beta-propeller domain mediates binding to the tail of the class V myosin
myr6 (myosin Vb). This interaction was confirmed by immunoprecipitation, which also demonstrated that BERP could associate with myosin Va, the product of the dilute gene. Like myosin Va, BERP is expressed in a punctate pattern in the cytoplasm as well as in the neurites and growth cones of PC12 cells. We also found that the RBCC domain of BERP is involved in protein dimerization. Stable expression of a mutant form of BERP lacking the myosin-binding domain but containing the dimerization domain resulted in defective PC12 cell spreading and prevented neurite outgrowth in response to nerve growth factor. Our studies present a novel interaction for the beta-propeller domain and provide evidence for a role for BERP in myosin V-mediated cargo transport.
[
Genomics,
2001]
We have recently identified a novel RING finger protein expressed in the rat brain, which associates with myosin V and alpha-actinin-4. Here we have cloned and characterized the orthologous human BERP cDNA and gene (HGMW-approved symbol RNF22). The human BERP protein is encoded by 11 exons ranging in size from 71 to 733 bp, and fluorescence in situ hybridization shows that the BERP gene maps to chromosome 11p15.5, 3'' to the FE65 gene. The human BERP protein is 98% identical to the rat and mouse proteins, and we have identified a highly conserved potential orthologue in Caenorhabditis elegans. BERP belongs to the RING finger-B-box-coiled coil (RBCC) subgroup of RING finger proteins, and a cluster of these RBCC protein genes is present in chromosome 11p15. Chromosome region 11p15 is thought to harbor tumor suppressor genes, and deletions of this region occur frequently in several types of human cancers. These observations indicate that BERP may be a novel tumor suppressor gene.
[
J Biol Chem,
2007]
Mutations in the NIPA1(SPG6) gene, named for "nonimprinted in Prader-Willi/Angelman" has been implicated in one form of autosomal dominant hereditary spastic paraplegia (HSP), a neurodegenerative disorder characterized by progressive lower limb spasticity and weakness. However, the function of NIPA1 is unknown. Here, we show that reduced magnesium concentration enhances expression of NIPA1 suggesting a role in cellular magnesium metabolism. Indeed NIPA1 mediates Mg2+ uptake that is electrogenic, voltage-dependent, and saturable with a Michaelis constant of 0.69+/-0.21 mM when expressed in Xenopus oocytes. Subcellular localization with immunofluorescence showed that endogenous NIPA1 protein associates with early endosomes and the cell surface in a variety of neuronal and epithelial cells. As expected of a magnesium-responsive gene, we find that altered magnesium concentration leads to a redistribution between the endosomal compartment and the plasma membrane; high magnesium results in diminished cell surface NIPA1 whereas low magnesium leads to accumulation in early endosomes and recruitment to the plasma membrane. The mouse NIPA1 mutants, T39R and G100R, corresponding to the respective human mutants showed a loss-of-function when expressed in oocytes and altered trafficking in transfected COS7 cells. We conclude that NIPA1 normally encodes a Mg2+ transporter and the loss-of function of NIPA1(SPG6) due to abnormal trafficking of the mutated protein provides the basis of the HSP phenotype.
[
Oncogene,
1997]
The
p53 protein is known to trans-activate a number of genes by specific binding to a consensus sequence containing two decamers of the type: PuPuPuCA/TT/AGPyPyPy. In order to identify new
p53 trans-activated genes, we defined a set of criteria for computer search of
p53-responsive elements. Based on experimental data, we proposed an extended consensus sequence composed of the two decamers of the El-Deiry consensus sequence flanked by two additional ones. A maximum of 3 bp substitutions was accepted for the two decamers of the El-Deiry consensus sequence, as well as for each additional decamer, except when the two decamers of the El-Deiry consensus sequence are contiguous. In this case, each additional decamer is allowed to bear one base insertion or deletion between the median C and G. This set of criteria was validated by identifying within the promoter region of the IGF-BP3 gene the existence of a novel
p53-responsive element whose functional significance was verified. By limiting our computer search to Vertebrate genes involved in cell cycle regulation, cellular adhesion or metastatic processes and to gene families most often found in HOVERGEN database, 7785 gene sequences were first analysed. Among the oncogenes, kinases, proteases and structural proteins, 55 new genes were selected; six of them were retrieved in more than one species.
[
C. elegans: Development and Gene Expression, EMBL, Heidelberg, Germany,
2010]
Left-right (LR) patterning is an intriguing but poorly understood process of bilaterian embryogenesis. We report a novel mechanism to break LR symmetry, whereby the embryo uncouples its midline from the anteroposterior (AP) axis. Specifically, the eight-cell C. elegans embryo establishes a midline that tilts rightward from the AP axis and positions more cells on the left, allowing subsequent differential LR fate inductions. To establish the tilted midline, cells exhibit LR asymmetric protrusions and a handed collective movement. This process, termed chiral morphogenesis, is based on differential regulation of cortical contractility between a pair of sister cells that are bilateral counterparts fate-wise, and is activated by non-canonical Wnt signaling. Chiral morphogenesis is timed by the division furrow of a neighbor of the sister pair, suggesting a nov el developmental clock and a novel signaling mechanism from the contractile ring to adjacent cells.
[
International Worm Meeting,
2005]
We have developed a systematic approach for inferring cis-regulatory logic from whole-genome microarray expression data.[1] This approach identifies local DNA sequence elements and the combinatorial and positional constraints that determine their context-dependent role in transcriptional regulation. We use a Bayesian probabilistic framework that relates general DNA sequence features to mRNA expression patterns. By breaking the expression data into training and test sets of genes, we are able to evaluate the predictive accuracy of our inferred Bayesian network. Applied to S. cerevisiae, our inferred combinatorial regulatory rules correctly predict expression patterns for most of the genes. Applied to microarray data from C. elegans[2], we identify novel regulatory elements and combinatorial rules that control the phased temporal expression of transcription factors, histones, and germline specific genes during embryonic and larval development. While many of the DNA elements we find in S. cerevisiae are known transcription factor binding sites, the vast majority of the DNA elements we find in C. elegans and the inferred regulatory rules are novel, and provide focused mechanistic hypotheses for experimental validation. Successful DNA element detection is a limiting factor in our ability to infer predictive combinatorial rules, and the larger regulatory regions in C. elegans make this more challenging than in yeast. Here we extend our previous algorithm to explicitly use conservation of regulatory regions in C. briggsae to focus the search for DNA elements. In addition, we expand the range of regulatory programs we identify by applying to more diverse microarray datasets.[3] 1. Beer MA and Tavazoie S. Cell 117, 185-198 (2004). 2. Baugh LR, Hill AA, Slonim DK, Brown EL, and Hunter, CP. Development 130, 889-900 (2003); Hill AA, Hunter CP, Tsung BT, Tucker-Kellogg G, and Brown EL. Science 290, 809812 (2000). 3. Baugh LR, Hill AA, Claggett JM, Hill-Harfe K, Wen JC, Slonim DK, Brown EL, and Hunter, CP. Development 132, 1843-1854 (2005); Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, and Kenyon C. Nature 424 277-283 (2003); Reinke V, Smith HE, Nance J, Wang J, Van Doren C, Begley R, Jones SJ, Davis EB, Scherer S, Ward S, and Kim SK. Mol Cell 6 605-616 (2000).
[
International C. elegans Meeting,
1991]
Members of the Wnt gene family encode cysteine-rich secretory glycoproteins that have been postulated to play a role in embryonic pattern formation in flies, frogs and mice. We are interested in studying the role of a C. elegans wnt gene in the development of the worm. A portion of a C. elegans wnt gene (Ce-wnt-l ) was previously cloned by PCR, using degenerate oligonucleotide primers corresponding to the conserved protein sequence motifs present in the Wnt family (Kamb et al., P.N.A.S., 86: 4372,1989). One genomic clone (2.7 kb) and two cDNA clones (0.56 kb and 1.3 kb) have subsequently been isolated and sequenced (G. Shackleford, L. Shiue, J. Mason and A. Kamb, unpublished results). Comparison of the genomic and cDNA sequences reveal marked differences in exon/intron organization between the Ce-wnt-l gene and other Wnt genes. The Ce-wnt-l gene was kindly mapped by John Sulston and Alan Coulson to a contig that has not yet been mapped to a chromosome. As with all other known members of the Wnt family, the predicted Ce- wnt-l protein is cysteine-rich and 21 of the 23 cysteines are conserved in other Wnt proteins. The degree of identity between the predicted Ce-wntI protein and other Wnt proteins ranges between 34% and 40%. The longer (1.3 kb) cDNA contains a putative translation start site, a polyadenylation signal and hybridizes to a single 1.5 kb mRNA on Northern blots containing C. elegans RNA. Preliminary studies suggest the the Ce-wnt-l RNA is expressed predominantly in embryos. Primer extension analysis predicts a transcription start site 98 bp upstream of the translation start site. We are currently attempting to isolate mutants with deletions in the Ce-wnt-l gene. After EMS mutagenesis, F2 animals are screened by PCR for loss of restriction sites in the Ce-wnt-l gene. PCR products are then analyzed by Southern hybridization. We have used the
unc-54(el 90) mutant which has a 412 bp deletion in reconstruction experiments to test this method. We have been able to detect and isolate one
unc-54( el 90) mutant in a background of 40,000 wild-type worms.