-
[
Trends Genet,
2001]
Four recent papers mark a major shift in functional genomic analysis for multicellular organisms. RNA-mediated interference was applied to inactivate individual genes systematically on a genomic scale. These studies subjected a third of the genes in the genome of Caenorhabditis elegans to reverse genetic analysis.
-
[
Parasitol Today,
1999]
The nematode Strongyloides ratti has a remarkable life cycle, which has both a parasitic and a free-living phase. The free-living phase includes a choice between two developmental routes. Here, Mark Viney discusses recent advances in understanding the biology of this developmental switch and shows how the life cycle of this nematode can be used to explore the lifestyle transitions common to all parasitic nematodes, as well as to address other basic biological questions.
-
[
Seminars in Developmental Biology,
1992]
At the 4-cell stage of the C. elegans embryo, three axes can be defined: anterior-posterior (A-P), dorsal-ventral (D-V), and left-right (L-R). The A-P axis first becomes obvious in the newly fertilized 1-cell embryo. Pronouned cytoplasmic assymmetries arise along the A-P axis during the first cell cycle, after which the zygote undergoes a series of stem cell-like cleavages with an A-P orientation of the mitotic spindle; these cleavages generate several somatic founder cells and a primordial germ cell. The D-V and L-R axes are defined by the direction of spindle rotation as the 2-cell embryo divides into four cells. In contrast to the A-P axis, there do not appear to be cellular asymmetries associated with the D-V and L-R axes, and both axes can easily be reversed by micromanipulation. Thus, with respect to the roles that the embryonic axes serve in cell-fate determination in the early C. elegans embryo, it appears that internally transmitted developmental information is differentially segregated along the A-P axis, but not along the D-V or L-R axes. Instead, D-V and L-R differences in the fates of cells within lineages appear to be dictated by differential
-
[
Nat Rev Mol Cell Biol,
2015]
DNA N(6)-adenine methylation (N(6)-methyladenine; 6mA) in prokaryotes functions primarily in the host defence system. The prevalence and significance of this modification in eukaryotes had been unclear until recently. Here, we discuss recent publications documenting the presence of 6mA in Chlamydomonas reinhardtii, Drosophila melanogaster and Caenorhabditis elegans; consider possible roles for this DNA modification in regulating transcription, the activity of transposable elements and transgenerational epigenetic inheritance; and propose 6mA as a new epigenetic mark in eukaryotes.
-
[
Parasitol Today,
1992]
The classical view of nematode parasites depicts their surface as the epicuticle, the outermost layer of a thick extracellular cuticle. However, many stages and species of nematode have been found to bear an electron-dense outer envelope distinct from and distal to the epicuticle itself. In this review, Mark Blaxter and colleagues summarize some wide-ranging studies in both free-living and parasitic nematodes, and suggest that, in many cases, it is the surface coat rather than the cuticle that displays dynamic properties thought to be involved in immune evasion by parasites.
-
[
Cell Microbiol,
2018]
Legionella pneumophila is a ubiquitous environmental bacterium that has evolved to infect and proliferate within amoebae and other protists. It is thought that accidental inhalation of contaminated water particles by humans is what has enabled this pathogen to proliferate within alveolar macrophages and cause pneumonia. However, the highly evolved macrophages are equipped more sophisticated innate defense mechanisms than protists, such as the evolution of phagotrophic feeding into phagocytosis with more evolved innate defense processes. Not surprisingly, the majority of proteins involved in phagosome biogenesis (~80%) have origins in the phagotrophy stage of evolution. There are a plethora of highly evolved cellular and innate metazoan processes, not represented in Protist biology, that are modulated by L. pneumophila; including TLR2 signaling, NF-B, apoptotic and inflammatory processes, histone modification, caspases, and the NLRC-Naip5 inflammasomes. Importantly, L. pneumophila infects hemocytes of the invertebrate Galleria mellonella, kill G. mellonella larvae, and proliferate in and kill Drosophila adult flies and Caenorhabditis elegans. Although co-evolution with protist hosts has provided a substantial blueprint for L. pneumophila to infect macrophages, we discuss the further evolutionary aspects of co-evolution of L. pneumophila and its adaptation to modulate various highly evolved innate metazoan processes prior to becoming a human pathogen.
-
[
Adv Gerontol,
2008]
Aging of organism is a complex process, however it is succeeded to mark out of new evolution-conservative genetic component of longevity and aging. Among the most perspective problems, connecting with this component, there are search of longevity genes in model animals, investigations of mechanisms of environment influence on aging speed (meal quality, light and temperature regimes, irradiation and hypergravity), revealing of aging biomarkers and genes, determined exceptional centenarians in human, and non-genetics methods of aging correction. The most impressive results observed in gerontogene search. In yeast and nematodes there are mutations, which increase maximum lifespan on 10 times, in Drosophila and mice--about 2 times. Nevertheless, genes regulated the aging speed by indirection, controlling organism resistance to damages by exogenous and endogenous stresses.
-
[
F1000Res,
2016]
The capacity of an axon to regenerate is regulated by its external environment and by cell-intrinsic factors. Studies in a variety of organisms suggest that alterations in axonal microtubule (MT) dynamics have potent effects on axon regeneration. We review recent findings on the regulation of MT dynamics during axon regeneration, focusing on the nematode Caenorhabditis elegans. In C. elegans the dual leucine zipper kinase (DLK) promotes axon regeneration, whereas the exchange factor for Arf6 (EFA-6) inhibits axon regeneration. Both DLK and EFA-6 respond to injury and control axon regeneration in part via MT dynamics. How the DLK and EFA-6 pathways are related is a topic of active investigation, as is the mechanism by which EFA-6 responds to axonal injury. We evaluate potential candidates, such as the MT affinity-regulating kinase PAR-1/MARK, in regulation of EFA-6 and axonal MT dynamics in regeneration.
-
[
Int J Biochem Cell Biol,
2013]
Dicarbonyl/L-xylulose reductase (DCXR) is a highly conserved and phylogenetically widespread enzyme converting L-xylulose into xylitol. It also reduces highly reactive -dicarbonyl compounds, thus performing a dual role in carbohydrate metabolism and detoxification. Enzymatic properties of DCXR from yeast, fungi and mammalian tissue extracts are extensively studied. Deficiency of the DCXR gene causes a human clinical condition called pentosuria and low DCXR activity is implicated in age-related diseases including cancers, diabetes, and human male infertility. While mice provide a model to study clinical condition of these diseases, it is necessary to adopt a physiologically tractable model in which genetic manipulations can be readily achieved to allow the fast genetic analysis of an enzyme with multiple biological roles. Caenorhabditis elegans has been successfully utilized as a model to study DCXR. Here, we discuss the biochemical properties and significance of DCXR activity in various human diseases, and the utility of C. elegans as a research platform to investigate the molecular and cellular mechanism of the DCXR biology.