-
[
J Cell Biol,
2017]
The position of the mitotic spindle is tightly controlled in animal cells as it determines the plane and orientation of cell division. Contacts between cytoplasmic dynein and astral microtubules (MTs) at the cell cortex generate pulling forces that position the spindle. An evolutionarily conserved G-GPR-1/2(Pins/LGN)-LIN-5(Mud/NuMA) cortical complex interacts with dynein and is required for pulling force generation, but the dynamics of this process remain unclear. In this study, by fluorescently labeling endogenous proteins in Caenorhabditis elegans embryos, we show that dynein exists in two distinct cortical populations. One population directly depends on LIN-5, whereas the other is concentrated at MT plus ends and depends on end-binding (EB) proteins. Knockout mutants lacking all EBs are viable and fertile and display normal pulling forces and spindle positioning. However, EB protein-dependent dynein plus end tracking was found to contribute to force generation in embryos with a partially perturbed dynein function, indicating the existence of two mechanisms that together create a highly robust force-generating system.
-
Hu Y, Qi J, She H, He D, Huang L, Mao Z, Lu F, Feng D, Kukar T, Yang Q, Ma L, Nie T, Yang S, Tao K, Zhu L
[
Autophagy,
2022]
TFEB (transcription factor EB) regulates multiple genes involved in the process of macroautophagy/autophagy and plays a critical role in lifespan determination. However, the detailed mechanisms that regulate TFEB activity are not fully clear. In this study, we identified a role for HSP90AA1 in modulating TFEB. HSP90AA1 was phosphorylated by CDK5 at Ser 595 under basal condition. This phosphorylation inhibited HSP90AA1, disrupted its binding to TFEB, and impeded TFEB's nuclear localization and subsequent autophagy induction. Pro-autophagy signaling attenuated CDK5 activity and enhanced TFEB function in an HSP90AA1-dependent manner. Inhibition of HSP90AA1 function or decrease in its expression significantly attenuated TFEB's nuclear localization and transcriptional function following autophagy induction. HSP90AA1-mediated regulation of a TFEB ortholog was involved in the extended lifespan of Caenorhabditis elegans in the absence of its food source bacteria. Collectively, these findings reveal that this regulatory process plays an important role in modulation of TFEB, autophagy, and longevity.Abbreviations : AL: autolysosome; AP: autophagosome; ATG: autophagy related; BafA1: bafilomycin A1; CDK5: cyclin-dependent kinase 5; CDK5R1: cyclin dependent kinase 5 regulatory subunit 1; CR: calorie restriction; FUDR: 5-fluorodeoxyuridine; HSP90AA1: heat shock protein 90 alpha family class A member 1; MAP1LC3: microtubule associated protein 1 light chain 3; NB: novobiocin sodium; SQSTM1: sequestosome 1; TFEB: transcription factor EB; WT: wild type.
-
Jung Y, Ha SG, Sohn J, Lee SV, Lee J, Kwon S, Ham S, Lee Y, Lee GY, Lee D, Kim SS, Park HH, Park S
[
Autophagy,
2024]
Sexual dimorphism affects various biological functions, including immune responses. However, the mechanisms by which sex alters immunity remain largely unknown. Using <i>Caenorhabditis elegans</i> as a model species, we showed that males exhibit enhanced immunity against various pathogenic bacteria through the upregulation of HLH-30 (Helix Loop Helix 30/TFEB (transcription factor EB), a transcription factor crucial for macroautophagy/autophagy. Compared with hermaphroditic <i>C. elegans</i>, males displayed increased activity of HLH-30/TFEB, which contributed to enhanced antibacterial immunity. <i>
atg-2</i> (AuTophaGy (yeast Atg homolog) 2) upregulated by HLH-30/TFEB mediated increased immunity in male <i>C. elegans</i>. Thus, the males appear to be equipped with enhanced HLH-30/TFEB-mediated autophagy, which increases pathogen resistance, and this may functionally prolong mate-searching ability with reduced risk of infection.
-
Irazoqui JE, Ballabio A, Chan L, Saha PK, Settembre C, Vetrini F, Di Bernardo D, Huynh T, Klisch TJ, Palmer D, Wollenberg AC, Mansueto G, Carissimo A, De Cegli R, Visvikis O
[
Nat Cell Biol,
2013]
The lysosomal-autophagic pathway is activated by starvation and plays an important role in both cellular clearance and lipid catabolism. However, the transcriptional regulation of this pathway in response to metabolic cues is uncharacterized. Here we show that the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is induced by starvation through an autoregulatory feedback loop and exerts a global transcriptional control on lipid catabolism via Ppargc1 and Ppar1. Thus, during starvation a transcriptional mechanism links the autophagic pathway to cellular energy metabolism. The conservation of this mechanism in Caenorhabditis elegans suggests a fundamental role for TFEB in the evolution of the adaptive response to food deprivation. Viral delivery of TFEB to the liver prevented weight gain and metabolic syndrome in both diet-induced and genetic mouse models of obesity, suggesting a new therapeutic strategy for disorders of lipid metabolism.
-
Irazoqui JE, Hansen M, McQuary PR, Dillin A, Lapierre LR, Gelino S, Chu CC, Ong B, De Magalhaes Filho CD, Chang JT, Davis AE, Visvikis O
[
Nat Commun,
2013]
Autophagy is a cellular recycling process that has an important anti-aging role, but the underlying molecular mechanism is not well understood. The mammalian transcription factor EB (TFEB) was recently shown to regulate multiple genes in the autophagy process. Here we show that the predicted TFEB orthologue HLH-30 regulates autophagy in Caenorhabditis elegans and, in addition, has a key role in lifespan determination. We demonstrate that
hlh-30 is essential for the extended lifespan of Caenorhabditis elegans in six mechanistically distinct longevity models, and overexpression of HLH-30 extends lifespan. Nuclear localization of HLH-30 is increased in all six Caenorhabditis elegans models and, notably, nuclear TFEB levels are augmented in the livers of mice subjected to dietary restriction, a known longevity-extending regimen. Collectively, our results demonstrate a conserved role for HLH-30 and TFEB in autophagy, and possibly longevity, and identify HLH-30 as a uniquely important transcription factor for lifespan modulation in Caenorhabditis elegans.
-
Chen C, Burnaevskiy N, Sands B, Pineda V, Kwon JJ, Morgan PG, Russell J, Park S, Bennett CF, Simko M, Vander Wende H, Bitto A, Crane MM, Mendenhall AR, Chen S, Acosta K, Choi H, Rossner R, Perez Olsen C, Jafari G, Wasko BM, Kaeberlein M
[
PLoS Genet,
2017]
Mitochondrial dysfunction can increase oxidative stress and extend lifespan in Caenorhabditis elegans. Homeostatic mechanisms exist to cope with disruptions to mitochondrial function that promote cellular health and organismal longevity. Previously, we determined that decreased expression of the cytosolic pentose phosphate pathway (PPP) enzyme transaldolase activates the mitochondrial unfolded protein response (UPRmt) and extends lifespan. Here we report that transaldolase (
tald-1) deficiency impairs mitochondrial function in vivo, as evidenced by altered mitochondrial morphology, decreased respiration, and increased cellular H2O2 levels. Lifespan extension from knockdown of
tald-1 is associated with an oxidative stress response involving
p38 and c-Jun N-terminal kinase (JNK) MAPKs and a starvation-like response regulated by the transcription factor EB (TFEB) homolog HLH-30. The latter response promotes autophagy and increases expression of the flavin-containing monooxygenase 2 (
fmo-2). We conclude that cytosolic redox established through the PPP is a key regulator of mitochondrial function and defines a new mechanism for mitochondrial regulation of longevity.
-
Wang Z, Lin R, Brekken RA, Jaramillo J, Li Y, Huang G, Luo M, Zhou A, Niederstrasser H, Wang C, Douglas PM, Mendiratta S, MacMillan JB, Zhao T, Posner BA, White MA, Oswald NW, Lin Z, Gao J, McMillan EA
[
Nat Commun,
2017]
Drugs that mirror the cellular effects of starvation mimics are considered promising therapeutics for common metabolic disorders, such as obesity, liver steatosis, and for ageing. Starvation, or caloric restriction, is known to activate the transcription factor EB (TFEB), a master regulator of lipid metabolism and lysosomal biogenesis and function. Here, we report a nanotechnology-enabled high-throughput screen to identify small-molecule agonists of TFEB and discover three novel compounds that promote autophagolysosomal activity. The three lead compounds include the clinically approved drug, digoxin; the marine-derived natural product, ikarugamycin; and the synthetic compound, alexidine dihydrochloride, which is known to act on a mitochondrial target. Mode of action studies reveal that these compounds activate TFEB via three distinct Ca2+-dependent mechanisms. Formulation of these compounds in liver-tropic biodegradable, biocompatible nanoparticles confers hepatoprotection against diet-induced steatosis in murine models and extends lifespan of Caenorhabditis elegans. These results support the therapeutic potential of small-molecule TFEB activators for the treatment of metabolic and age-related disorders.
-
[
MicroPubl Biol,
2020]
The action potential (AP) is the basic signaling unit in various crucial physiological processing, for instance, in neurotransmission, muscle contraction, and glandular secretion (Koch, 1990). The classic model animal, Caenorhabditis elegans (or C. elegans), with a simple and compact nervous system, conservatively employs the calcium-mediated all-or-none APs for odor response in AWA olfactory neurons (Liu et al., 2018), as well as for muscle contraction in either body wall muscles (Gao and Zhen, 2011; Liu et al., 2011) and pharyngeal muscles (Davis et al., 1999). Plateau potentials were also observed in ASE and RMD neurons (Goodman et al., 1998; Mellem et al., 2008; Lockery et al., 2009; Lockery and Goodman, 2009), though the underlying roles in specific behavior are still elusive. Either in neurons or in muscles, the action potential firing is dependent on the excitatory pre-synaptic vesicles release. The minimum number of the presynaptic vesicles to elicit a single action potential in C. elegans has not been reported before. Here, by the combination of optogenetics with in-vivo patch clamping technology, we demonstrated that at least approximately 37 excitatory acetylcholinergic vesicles are required for the initiation of an action potential at post-synaptic body wall muscles.
-
[
PLoS Genet,
2020]
Nutrient utilization and energy metabolism are critical for the maintenance of cellular homeostasis. A mutation in the C9orf72 gene has been linked to the most common forms of neurodegenerative diseases that include amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we have identified an evolutionarily conserved function of C9orf72 in the regulation of the transcription factor EB (TFEB), a master regulator of autophagic and lysosomal genes that is negatively modulated by mTORC1. Loss of the C. elegans orthologue of C9orf72, ALFA-1, causes the nuclear translocation of HLH-30/TFEB, leading to activation of lipolysis and premature lethality during starvation-induced developmental arrest in C. elegans. A similar conserved pathway exists in human cells, in which C9orf72 regulates mTOR and TFEB signaling. C9orf72 interacts with and dynamically regulates the level of Rag GTPases, which are responsible for the recruitment of mTOR and TFEB on the lysosome upon amino acid signals. These results have revealed previously unknown functions of C9orf72 in nutrient sensing and metabolic pathways and suggest that dysregulation of C9orf72 functions could compromise cellular fitness under conditions of nutrient stress.
-
Sternberg PW, Ansell BRE, Andrews KT, Nowell C, Chang BCH, Hofmann A, Crawford S, Korhonen PK, Baell J, Gijs MAM, Fisher GM, Young ND, Preston S, Mouchiroud L, Gasser RB, Jabbar A, Auwerx J, Davis RA, McGee SL, Cornaglia M
[
FASEB J,
2017]
As a result of limited classes of anthelmintics and an over-reliance on chemical control, there is a great need to discover new compounds to combat drug resistance in parasitic nematodes. Here, we show that deguelin, a plant-derived rotenoid, selectively and potently inhibits the motility and development of nematodes, which supports its potential as a lead candidate for drug development. Furthermore, we demonstrate that deguelin treatment significantly increases gene transcription that is associated with energy metabolism, particularly oxidative phosphorylation and mito-ribosomal protein production before inhibiting motility. Mitochondrial tracking confirmed enhanced oxidative phosphorylation. In accordance, real-time measurements of oxidative phosphorylation in response to deguelin treatment demonstrated an immediate decrease in oxygen consumption in both parasitic (Haemonchus contortus) and free-living (Caenorhabditis elegans) nematodes. Consequently, we hypothesize that deguelin is exerting its toxic effect on nematodes as a modulator of oxidative phosphorylation. This study highlights the dynamic biologic response of multicellular organisms to deguelin perturbation.-Preston, S., Korhonen, P. K., Mouchiroud, L., Cornaglia, M., McGee, S. L., Young, N. D., Davis, R. A., Crawford, S., Nowell, C., Ansell, B. R. E., Fisher, G. M., Andrews, K. T., Chang, B. C. H., Gijs, M. A. M., Sternberg, P. W., Auwerx, J., Baell, J., Hofmann, A., Jabbar, A., Gasser, R. B. Deguelin exerts potent nematocidal activity via the mitochondrial respiratory chain.