-
[
Cell Metab,
2007]
Metabolic component depletion in model systems results in life-span extension, which has been difficult to reconcile with human metabolic pathologies. Recently, Rea et al. (2007) have shown that mitochondrial electron transport chain RNAi phenotypes in the worm C. elegans are dose dependent, providing an alternative view of mitochondrial function in longevity and metabolic diseases.
-
[
Cell,
2011]
The life span of C. elegans can be increased via reduced function of the mitochondria; however, the extent to which mitochondrial alteration in a single, distinct tissue may influence aging in the whole organism remains unknown. We addressed this question by asking whether manipulations to ETC function can modulate aging in a cell-non-autonomous fashion. We report that the alteration of mitochondrial function in key tissues is essential for establishing and maintaining a prolongevity cue. We find that regulators of mitochondrial stress responses are essential and specific genetic requirements for the electron transport chain (ETC) longevity pathway. Strikingly, we find that mitochondrial perturbation in one tissue is perceived and acted upon by the mitochondrial stress response pathway in a distal tissue. These results suggest that mitochondria may establish and perpetuate the rate of aging for the whole organism independent of cell-autonomous functions.
-
[
Aging, Metabolism, Stress, Pathogenesis, and Small RNAs, Madison, WI,
2010]
As an organism ages, the intrinsic challenges placed upon the proteome provide the greatest risk for several diseases of proteotoxcity, Alzheimer's Disease being just one. We have created systems that can monitor both intracellular systems of protein homeostasis (proteostasis) as well as systems to monitor organism wide collapse of proteostasis in live animals. Interestingly, we find that many of the protein quality control pathways intersect with the well established pathways that modulate the aging process. Therefore, a clear understanding of the proteostasis control systems will be required to understand how protein misfolding can drive the aging process. In our presentation we will describe results that link control of proteostasis to the aging process and we will describe how we use the aging process to uncover novel aspects of protein quality control.
-
[
Cell,
2011]
In this issue, Durieux etal. (2011) describe a tissue-specific signal, originating from mitochondria, that acts cell non-autonomously to regulate life span in the nematode, C.elegans. This new finding provides a first step toward resolving the relative contributions of mitochondrial free radical damage and signaling mechanisms in aging.
-
[
Biochemistry,
1987]
The major intestinal esterase from the nematode Caenorhabditis elegans has been purified to essential homogeneity. Starting from whole worms, the overall purification is 9000-fold with a 10% recovery of activity. The esterase is a single polypeptide chain of Mr 60,000 and is stoichiometrically inhibited by organophosphates. Substrate preferences and inhibition patterns classify the enzyme as a carboxylesterase (EC 3.1.1.1), but the physiological function is unknown. The sequence of 13 amino acid residues at the esterase N- terminus has been determined. This partial sequence shows a surprisingly high degree of similarity to the N-terminal sequence of two carboxylesterases recently isolated from Drosophila mojavensis [Pen, J., van Beeumen, J., & Beintema, J. J. (1986) Biochem. J. 238, 691-699].
-
[
Aging, Metabolism, Stress, Pathogenesis, and Small RNAs, Madison, WI,
2010]
As in most multi-cellular organisms, the nervous system of C. elegans functions to perceive environmental cues and transmit this information to the rest of the organism in order to achieve an integrated systemic response. Recent studies have shown that even conserved processes that were once thought to act only at the cellular level may depend on sensory input, and may in turn, direct neuronal output. Conserved cellular stress responses such as the heat shock response and the unfolded protein response (UPR) may be signaled cell non-autonomously to other tissues. We sought to determine whether cellular stress initiated in the neurons could regulate the stress responses of distal tissues. Misfolding proteins are known to induce a strong chaperone-mediated stress response. Expression of a toxic, misfolded disease protein in C. elegans neurons initiated a cell stress response that signaled cell non-autonomously to other tissues in the worm. It will be important to determine how non-autonomous stress responses are initiated by the presence of misfolded proteins and to identify the nature of the resulting signal that is sent from neurons to distal tissues.
-
[
Curr Biol,
1999]
In this Brief Communication, which appeared in the 14 September 1998 issue of Current Biology, the UV dose was reported erroneously. The dose reported was 20 J/m2 but the actual dose used was 0.4 J/cm2. Also, the gene formally referred to as
tkr-1 has since been renamed
old-1 (overexpression longevity determination).
-
[
J Bacteriol,
2014]
Volume 195, no. 16, p. 35143523, 2013. A number of problems related to images published in this paper have been brought to our attention. Figure 1D contains duplicated images in lanes S and LE, and Fig. 4D and 6B contain images previously published in articles in this journal and in Microbiology and Microbial Pathogenesis, i.e., the following: C. G. Ramos, S. A. Sousa, A. M. Grilo, J. R. Feliciano, and J. H. Leitao, J. Bacteriol. 193:15151526, 2011. doi:10.1128/JB.01374-11. S. A. Sousa, C. G. Ramos, L. M. Moreira, and J. H. Leitao, Microbiology 156:896908, 2010. doi:10.1099/mic.0.035139-0. C. G. Ramos, S. A. Sousa, A. M. Grilo, L. Eberl, and J. H. Leitao, Microb. Pathog. 48:168177, 2010. doi: 10.1016/j.micpath.2010.02.006. Therefore, we retract the paper. We deeply regret this situation and apologize for any inconvenience to the editors and readers of Journal of Bacteriology, Microbial Pathogenesis, and Microbiology.
-
Berynskyy M, Morimoto RI, Bukau B, Stengel F, Kirstein J, Szlachcic A, Arnsburg K, Stank A, Scior A, Nillegoda NB, Gao X, Guilbride DL, Aebersold R, Wade RC, Mayer MP
[
Nature,
2015]
Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states. Healthy metazoan cells effectively eliminate intracellular protein aggregates, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control.
-
[
Worm Breeder's Gazette,
1992]
unc-4 LacZ expression in A-type motor neurons David M. Miller and Charles J. Niemeyer, Dept. of Cell Biology, Duke Univ. Medical Ctr, Durham, NC 27710