[
Methods Cell Biol,
2012]
This chapter is dedicated to the study of aging in Caenorhabditis elegans (C. elegans). The assays are divided into two sections. In the first section, we describe detailed protocols for performing life span analysis in solid and liquid medium. In the second section, we describe various assays for measuring age-related changes. Our laboratory has been involved in several fruitful collaborations with non-C. elegans researchers keen on testing a role for their favorite gene in modulating aging (Carrano et al., 2009; Dong et al., 2007; Raices et al., 2008; Wolff et al., 2006). But even with the guidance of trained worm biologists, this undertaking can be daunting. We hope that this chapter will serve as a worthy compendium for those researchers who may or may not have immediate access to laboratories studying C. elegans.
[
Philos Trans R Soc Lond B Biol Sci,
2018]
Control is essential to the functioning of any neural system. Indeed, under healthy conditions the brain must be able to continuously maintain a tight functional control between the system's inputs and outputs. One may therefore hypothesize that the brain's wiring is predetermined by the need to maintain control across multiple scales, maintaining the stability of key internal variables, and producing behaviour in response to environmental cues. Recent advances in network control have offered a powerful mathematical framework to explore the structure-function relationship in complex biological, social and technological networks, and are beginning to yield important and precise insights on neuronal systems. The network control paradigm promises a predictive, quantitative framework to unite the distinct datasets necessary to fully describe a nervous system, and provide mechanistic explanations for the observed structure and function relationships. Here, we provide a thorough review of the network control framework as applied to <i>Caenorhabditis elegans</i> (Yan <i>et al.</i> 2017 <i>Nature</i><b>550</b>, 519-523. (doi:10.1038/nature24056)), in the style of Frequently Asked Questions. We present the theoretical, computational and experimental aspects of network control, and discuss its current capabilities and limitations, together with the next likely advances and improvements. We further present the Python code to enable exploration of control principles in a manner specific to this prototypical organism.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling <i>C. elegans</i> at cellular resolution'.