-
[
Ciba Found Symp,
1987]
Human lymphatic filariasis is caused mainly by Wuchereria bancrofti, Brugia malayi and Brugia timori. Of the estimated 90.2 million people infected, more than 90% have bancroftian and less than 10% brugian filariasis. The distribution and transmission of the disease are closely associated with socioeconomic and behavioural factors in endemic populations. Urban W. bancrofti infection, as seen in South-East Asia, is related to poor urban sanitation, which leads to intense breeding of Culex quiquefasciatus, the principal vector. Rural strains of W. bancrofti are transmitted primarily by Anopheles spp. and Aedes spp. mosquitoes. Brugian filariasis is mainly a rural disease transmitted by Mansonia, Anopheles and Aedes spp. mosquitoes. The periodic form of B. malayi is principally a human parasite, whereas the subperiodic form is zoonotically transmitted in some countries. The control of filariasis has relied on chemotherapy, vector control and reduction of human-vector contact. Although eradication of W. bancrofti and periodic B. malayi can be achieved, it is possible only to reduce transmission of zoonotic subperiodic B. malayi in some areas. A rational approach to control should consider ecological, socioeconomic and behavioural factors and, where feasible, integrate control programmes into the delivery system for primary health care.
-
[
Curr Biol,
2005]
Aurora B kinases play important roles during mitosis in eukaryotic cells; new work in Caenorhabditis elegans has identified the Tousled kinase TLK-1 as a substrate activator of the model nematode''''s Aurora B kinase AIR-2 which acts to ensure proper chromosome segregation during
-
[
East Afr Med J,
1997]
Apoptosis differs from necrosis in that no inflammatory changes occur. The understanding of apoptosis was greatly improved by the discovery of a natural model of apoptosis in Caenorhabditis elegans, a nematode worm. The study of this worm led to the discovery of two sets of genes, the prosuicide genes and the antisuicide genes which control apoptosis. Apoptosis is an active process that involves w activation of specific enzymes. The understanding of the molecular biology of apoptosis may in future lead to the availability of a potent weapon to use against cancer and to modify cell death that occurs in the neurodegenerative disorders.AD - Department of Morbid Anatomy and Forensic Medicine, Faculty of Basic Medical Sciences, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria.FAU - Olasode, B JAU - Olasode BJLA - engPT - Journal ArticlePT - ReviewPT - Review, TutorialCY - KENYATA - East Afr Med JJID - 0372766SB - IM
-
[
Genetics,
2019]
The <b>T</b>arget <b>o</b>f <b>R</b>apamycin (TOR or mTOR) is a serine/threonine kinase that regulates growth, development, and behaviors by modulating protein synthesis, autophagy, and multiple other cellular processes in response to changes in nutrients and other cues. Over recent years, TOR has been studied intensively in mammalian cell culture and genetic systems because of its importance in growth, metabolism, cancer, and aging. Through its advantages for unbiased, and high-throughput, genetic and <i>in vivo</i> studies, <i>Caenorhabditis elegans</i> has made major contributions to our understanding of TOR biology. Genetic analyses in the worm have revealed unexpected aspects of TOR functions and regulation, and have the potential to further expand our understanding of how growth and metabolic regulation influence development. In the aging field, <i>C. elegans</i> has played a leading role in revealing the promise of TOR inhibition as a strategy for extending life span, and identifying mechanisms that function upstream and downstream of TOR to influence aging. Here, we review the state of the TOR field in <i>C. elegans</i>, and focus on what we have learned about its functions in development, metabolism, and aging. We discuss knowledge gaps, including the potential pitfalls in translating findings back and forth across organisms, but also describe how TOR is important for <i>C. elegans</i> biology, and how <i>C. elegans</i> work has developed paradigms of great importance for the broader TOR field.
-
[
Trends in Cell Biology,
1996]
Cellular microtubules assemble and disassemble at a variety of rates and frequencies, and these properties contribute directly to the cell-cycle-associated rearrangements of the microtubule cytoskeleton and to the molecular basis of mitosis. The kinetics of assembly/disassembly are governed, in part, by the hydrolysis of GTP bound to the B-tubulin nucleotide-binding site. The B-tubulin GTP-binding site, therefore, lies at the heart of microtubule assembly-disassembly kinetics, and the elucidation of its structure is central to an understanding of the cellular behaviour of microtubules. Unfortunately, the crystallographic structure of B-tubulin is not yet available. In this review, we describe the progress being made using mutagenesis and biochemical studies to understand the structure of this unusual GTP-binding site.
-
[
Microbiol Mol Biol Rev,
2021]
SUMMARYExtensive use of chemical insecticides adversely affects both environment and human health. One of the most popular biological pest control alternatives is bioinsecticides based on <i>Bacillus thuringiensis</i> This entomopathogenic bacterium produces different protein types which are toxic to several insect, mite, and nematode species. Currently, insecticidal proteins belonging to the Cry and Vip3 groups are widely used to control insect pests both in formulated sprays and in transgenic crops. However, the benefits of <i>B. thuringiensis</i>-based products are threatened by insect resistance evolution. Numerous studies have highlighted that mutations in genes coding for surrogate receptors are responsible for conferring resistance to <i>B. thuringiensis</i> Nevertheless, other mechanisms may also contribute to the reduction of the effectiveness of <i>B. thuringiensis</i>-based products for managing insect pests and even to the acquisition of resistance. Here, we review the relevant literature reporting how invertebrates (mainly insects and <i>Caenorhabditis elegans</i>) respond to exposure to <i>B. thuringiensis</i> as either whole bacteria, spores, and/or its pesticidal proteins.
-
[
1986]
Wild-type body wall muscle cells of Caenorhabditis elegans produce at a constant ratio two myosin heavy chain isoforms, A and B, that form homodimeric myosins. Electron microscopy of negatively stained complexes of isoform-specific antibodies with isolated thick filaments shows that the surface of the 9.7 =B5m long filament is differentiated with respect to myosin content: a medial 1.8 =B5m zone contains myosin A and two polar 4.4 = =B5m zones contain myosin B. Biochemical and electron microscopic studies show that at 0.45 M KC1, pH 6.35, myosin B and paramyosin are solubilized. The medial all-myosin A region with novel core structures extending in a polar manner remain. These dissociation experiments suggest a sequential model for wild-type thick filament assembly in which myosins A and B would participate in the initiation and termination of assembly, respectively. Analysis of mutant thick filaments clarifies the relationship of the myosin isoforms. CB190 (
unc-54 I) thick filaments contain myosin A only and have normal length. CB1214 (
unc-15 I) mutants produce no paramyosin, and their thick filaments are composed of a medial myosin region
-
[
Results Probl Cell Differ,
2017]
Asymmetric cell division is a common mode of cell differentiation during the invariant lineage of the nematode, C. elegans. Beginning at the four-cell stage, and continuing throughout embryogenesis and larval development, mother cells are polarized by Wnt ligands, causing an asymmetric inheritance of key members of a Wnt/B-catenin signal transduction pathway termed the Wnt/B-catenin asymmetry pathway. The resulting daughter cells are distinct at birth with one daughter cell activating Wnt target gene expression via B-catenin activation of TCF, while the other daughter displays transcriptional repression of these target genes. Here, we seek to review the body of evidence underlying a unified model for Wnt-driven asymmetric cell division in C. elegans, identify global themes that occur during asymmetric cell division, as well as highlight tissue-specific variations. We also discuss outstanding questions that remain unanswered regarding this intriguing mode of asymmetric cell division.
-
[
East Afr Med J,
1994]
The nematode parasites Wuchereria bancrofti, Brugia malayi and B. timori are the causative agents of human lymphatic filariasis. Of the estimated 90 million infections world-wide, W. bancrofti is responsible for over 80 million cases and is the only known aetiologic agent in the African Region. Numbers of infected persons are on the increase world-wide due to rural-urban migrations which result in mushrooming of shanty towns often encouraging formation of favourable mosquito breeding-sites. Development of insecticide resistance by the vector mosquitoes; the toxicity and high cost of available effective formulations, and the deteriorating global economy aggravate this situation. Human lymphatic filariasis is more of a morbidity than a mortality-causing disease but can be devastating and crippling at both the individual and community levels. Unlike many parasitic infections, lymphatic filariasis can easily be controlled. The success of any control programme depends on sensitive diagnostic techniques and this is the challenge. Identification of all true positive individuals in an endemic community can be problematic since filariasis is spectral and no single diagnostic technique can be expected to be uniformly sensitive in all situations. Availability of new biotechnologies has given impetus to formulations of several diagnostic tools. New diagnostic methods and improvements on the traditional ones is the topic of this review. Recommendations in view of their field applications are also discussed.
-
[
Trends Glycosci Glycotechnol,
2004]
Blood-group-ABH antigens have been attributed no physiological roles. While studying Ca2+ dependent cell-cell adhesion of Xenopus laevis, we found that blood-group-B active GPI-anchored lectin and blood-group-B active glycoconjugates are mediating cell adhesion of early embryonic cells. In mouse embryonic cells, not the blood-group-B antigens but the Lewis x blood-group-active molecules are playing similar roles in compaction. How did the surface glycomes playing roles in cell-cell adhesion evolve in these two species? In the nematode Caenorhabditis elegans, sugar chains of chondroitin proteoglycan play indispensable roles in completion of cell division. A decrease of chondroitin on the embryonic cell surfaces results in apparent reversion of cell division. Cytokinesis and chromosome partition becomes abnormal, and the embryonic cells die. Are chondroitin in the higher organisms playing similar roles in cell division, or are the roles of chondroitin replaced with different sugar chains? As seen in the two examples, comparison of glycomes between various organisms could be very powerful hypothesis generating tools in glycobiology. With the completion of genome DNA sequencing, it seems to be high time to study the evolution of glycomes with bioinformatics and functional glycomics.