-
Gotz J, Banister S, Nicholas HR, Chew YL, Ullrich M, Liang V, Kassiou M, Zaw T, Berber S, Song X, Lam H
[
Nat Protoc,
2014]
In this protocol we describe the incorporation of bio-orthogonal amino acids as a versatile method for visualizing and identifying de novo-synthesized proteins in the roundworm Caenorhabditis elegans. This protocol contains directions on implementing three complementary types of analysis: 'click chemistry' followed by western blotting, click chemistry followed by immunofluorescence, and isobaric tags for relative and absolute quantification (iTRAQ) quantitative mass spectrometry. The detailed instructions provided herein enable researchers to investigate the de novo proteome, an analysis that is complicated by the fact that protein molecules are chemically identical to each other, regardless of the timing of their synthesis. Our protocol circumvents this limitation by identifying de novo-synthesized proteins via the incorporation of the chemically modifiable azidohomoalanine instead of the natural amino acid methionine in the nascent protein, followed by facilitating the visualization of the resulting labeled proteins in situ. It will therefore be an ideal tool for studying de novo protein synthesis in physiological and pathological processes including learning and memory. The protocol requires 10 d for worm growth, liquid culture and synchronization; 1-2 d for bio-orthogonal labeling; and, with regard to analysis, 3-4 d for western blotting, 5-6 d for immunofluorescence or ~3 weeks for mass spectrometry.
-
[
Fundamental and Applied Nematology,
1995]
The nematicidal activity of the spore-crystal mixtures of three Bacillus thuringiensis isolates against hatched juveniles and adults of Caenorhabditis elegans was investigated. Toxicity was determined by adding 50-ul aliquots of the spore-crystal mixtures to microtitre plate wells containing 50-ul aqueous suspensions of 200-400 hatched juveniles and adults of C. elegans. Nematode mortality was observed from 8 hours incubation onwards; after 24 hours incubation no more significant increases in nematode mortality occurred. Nematode mortality varied from about 50 to 60% when the nematicidal activity was tested in distilled water and was usually somewhat higher (but less than 10%) when tested in axenic medium. Toxicity varied between the three isolates. Concentrations of at least 10*8 particles/ml were necessary to cause a nematode mortality higher than 30%. Nematicidal activity was only observed when spore-crystal mixtures from at least 2-day-old cultures, consisting of about 50% of vegetative cells, often containing a spore, and for about 50% of a mixture of spores and crystals, were used. Heating to 75C and higher for 24 hours and autoclaving at 120C for 20 min destroyed the nematicidal activity of all three isolates. Differences in stability of the nematicidal activity were observed between the three isolates. In two isolates the nematicidal activity did not decline after storage at 28C for 15 days; in the third isolate the nematicidal activity declined after storage at 28C for 7 days. Multiple freezing at -20C or -70C and thawing had no effect on the nematicidal activity of two isolates but decreased the nematicidal activity of the third isolate. pH changes resulted in differences in stability of the nematicidal activity between the three isolates. These results may indicate the presence of different toxins.
-
[
Biosci Biotechnol Biochem,
2016]
We compared the growth inhibitory effects of all aldohexose stereoisomers against the model animal Caenorhabditis elegans. Among the tested compounds, the rare sugars d-allose (d-All), d-talose (d-Tal), and l-idose (l-Ido) showed considerable growth inhibition under both monoxenic and axenic culture conditions. 6-Deoxy-d-All had no effect on growth, which suggests that C6-phosphorylation by hexokinase is essential for inhibition by d-All.
-
[
Bioorg Med Chem Lett,
2016]
Biological activities of unusual monosaccharides (rare sugars) have largely remained unstudied until recently. We compared the growth inhibitory effects of aldohexose stereoisomers against the animal model Caenorhabditis elegans cultured in monoxenic conditions with Escherichia coli as food. Among these stereoisomers, the rare sugar d-arabinose (d-Ara) showed particularly strong growth inhibition. The IC50 value for d-Ara was estimated to be 7.5mM, which surpassed that of the potent glycolytic inhibitor 2-deoxy-d-glucose (19.5mM) used as a positive control. The inhibitory effect of d-Ara was also observed in animals cultured in axenic conditions using a chemically defined medium; this excluded the possible influence of E. coli. To our knowledge, this is the first report of biological activity of d-Ara. The d-Ara-induced inhibition was recovered by adding either d-ribose or d-fructose, but not d-glucose. These findings suggest that the inhibition could be induced by multiple mechanisms, for example, disturbance of d-ribose and d-fructose metabolism.
-
[
Bioorg Med Chem Lett,
2019]
The biological activities of deoxy sugars (deoxy monosaccharides) have remained largely unstudied until recently. We compared the growth inhibition by all 1-deoxyketohexoses using the animal model Caenorhabditis elegans. Among the eight stereoisomers, 1-deoxy-d-allulose (1d-d-Alu) showed particularly strong growth inhibition. The 50% inhibition of growth (GI<sub>50</sub>) concentration by 1d-d-Alu was estimated to be 5.4mM, which is approximately 10 times lower than that of d-allulose (52.7mM), and even lower than that of the potent glycolytic inhibitor, 2-deoxy-d-glucose (19.5mM), implying that 1d-d-Alu has a strong growth inhibition. In contrast, 5-deoxy- and 6-deoxy-d-allulose showed no growth inhibition of C. elegans. The inhibition by 1d-d-Alu was alleviated by the addition of d-ribose or d-fructose. Our findings suggest that 1d-d-Alu-mediated growth inhibition could be induced by the imbalance in d-ribose metabolism. To our knowledge, this is the first report of biological activity of 1d-d-Alu which may be considered as an antimetabolite drug candidate.
-
[
Biochim Biophys Acta Proteins Proteom,
2020]
d-Aspartate oxidase (DDO) is a flavin adenine dinucleotide (FAD)-containing flavoprotein that stereospecifically acts on acidic D-amino acids (i.e., free d-aspartate and D-glutamate). Mammalian DDO, which exhibits higher activity toward d-aspartate than D-glutamate, is presumed to regulate levels of d-aspartate in the body and is not thought to degrade D-glutamate in vivo. By contrast, three DDO isoforms are present in the nematode Caenorhabditis elegans, DDO-1, DDO-2, and DDO-3, all of which exhibit substantial activity toward D-glutamate as well as d-aspartate. In this study, we optimized the Escherichia coli culture conditions for production of recombinant C. elegans DDO-1, purified the protein, and showed that it is a flavoprotein with a noncovalently but tightly attached FAD. Furthermore, C. elegans DDO-1, but not mammalian (rat) DDO, efficiently and selectively degraded D-glutamate in addition to d-aspartate, even in the presence of various other amino acids. Thus, C. elegans DDO-1 might be a useful tool for determining these acidic D-amino acids in biological samples.
-
[
Vet Parasitol,
2008]
Strongyloides sp. (Nematoda) are very wide spread small intestinal parasites of vertebrates that can form a facultative free-living generation. Most authors considered all Strongyloides of farm ruminants to belong to the same species, namely Strongyloides papillosus (Wedl, 1856). Here we show that, at least in southern Germany, the predominant Strongyloides found in cattle and the Strongyloides found in sheep belong to separate, genetically isolated populations. While we did find mixed infections in cattle, one form clearly dominated. This variety, in turn, was never found in sheep, indicating that the two forms have different host preferences. We also present molecular tools for distinguishing the two varieties, and an analysis of their phylogenetic relationship with the human parasite Strongyloides stercoralis and the major laboratory model species Strongyloides ratti. Based on our findings we propose that Strongyloides from sheep and the predominant Strongyloides from cattle should be considered separate species as it had already been proposed by [Brumpt, E., 1921. Recherches sur le determinisme des sexes et de l''evolution des Anguillules parasites (Strongyloides). Comptes rendu hebdomadaires des seances et memoires de la Societe de Biologie et de ses filiales 85, 149-152], but was largely ignored by later authors. For nomenclature, we follow [Brumpt, E., 1921. Recherches sur le determinisme des sexes et de l''evolution des Anguillules parasites (Strongyloides). Comptes rendu hebdomadaires des seances et memoires de la Societe de Biologie et de ses filiales 85, 149-152] and use the name S. papillosus for the Strongyloides of sheep and the name Strongyloides vituli for the predominant Strongyloides of cattle.
-
[
J Appl Glycosci (1999),
2019]
D-Allose (D-All), C-3 epimer of D-glucose, is a rare sugar known to suppress reactive oxygen species generation and prevent hypertension. We previously reported that D-allulose, a structural isomer of D-All, prolongs the lifespan of the nematode Caenorhabditis elegans. Thus, D-All was predicted to affect longevity. In this study, we provide the first empirical evidence that D-All extends the lifespan of C. elegans. Lifespan assays revealed that a lifespan extension was induced by 28 mM D-All. In particular, a lifespan extension of 23.8 % was achieved (p< 0.0001). We further revealed that the effects of D-All on lifespan were dependent on the insulin gene
daf-16 and the longevity gene
sir-2.1, indicating a distinct mechanism from those of other hexoses, such as D-allulose, with previously reported antiaging effects.
-
[
J Nat Med,
2008]
No anthelmintic sugars have yet been identified. Eight ketohexose stereoisomers (D- and L-forms of psicose, fructose, tagatose and sorbose), along with D-galactose and D-glucose, were examined for potency against L1 stage Caenorhabditis elegans fed Escherichia coli. Of the sugars, D-psicose specifically inhibited the motility, growth and reproductive maturity of the L1 stage. D-Psicose probably interferes with the nematode nutrition. The present results suggest that D-psicose, one of the rare sugars, is a potential anthelmintic.
-
[
Fundamental and Applied Nematology,
1995]
Ultrastructural analysis shows the presence of membranes originating at the top of the intestinal microvilli, along the entire length of the intestine in the three rhabditid nematodes Caenorhabditis elegans, Panagrolaimus superbus and Acrobeloides maximus. The membranes allow the passage of fluorescein isothiocyanate, methyl red, neutral red and acridine orange, but allow only sparse passage of ferritin molecules. Upon the introduction of a sublethal dose of sodium azide, the intestinal lumen displays an increased secretion of membrane layers. Whole mount staining of the nematodes with the Solanum tuberosum and Triticum vulgare lectins, known to bind with high affinity to chitin, shows only specific binding of Solanum tuberosum lectin to the brush border in all developmental stages of C. elegans, P. superbus and A. maximus. The results reveal the presence of membranes in the intestine of three species of one of the most ancient metazoan phyla, exhibiting morphological and functional characteristics reminiscent of peritrophic membranes in insects.