-
[
Acta Crystallogr D Biol Crystallogr,
2003]
The nucleoside hydrolases (NHs) are a family of nucleoside-modifying enzymes. They play an important role in the purine-salvage pathway of many pathogenic organisms which are unable to synthesize purines de novo. Although well characterized in protozoan parasites, their precise function and mechanism remain unclear in other species. For the first time, NHs from Caenorhabditis elegans and Campylobacter jejuni, which are representatives of mesozoa and bacteria, respectively, have been cloned and purified. Steady-state kinetics indicate a different substrate-specificity profile to previously described hydrolases. Native diffraction data sets were collected from crystals of NH from each organism. The hexagonal crystals (space group P6(2)22 or P6(4)22) of NH from C. elegans diffracted to a resolution of 2.8 Angstrom, while the data set from the orthorhombic crystals (space group I222 or I2(1)2(1)2(1)) of NH from C. jejuni could be processed to 1.7 Angstrom resolution. The unit-cell parameters were a=b=102.23, c=117.27 Angstrom in the former case and a=101.13, b=100.13, c=81.37 in the latter.
-
[
Vet Parasitol,
2008]
Strongyloides sp. (Nematoda) are very wide spread small intestinal parasites of vertebrates that can form a facultative free-living generation. Most authors considered all Strongyloides of farm ruminants to belong to the same species, namely Strongyloides papillosus (Wedl, 1856). Here we show that, at least in southern Germany, the predominant Strongyloides found in cattle and the Strongyloides found in sheep belong to separate, genetically isolated populations. While we did find mixed infections in cattle, one form clearly dominated. This variety, in turn, was never found in sheep, indicating that the two forms have different host preferences. We also present molecular tools for distinguishing the two varieties, and an analysis of their phylogenetic relationship with the human parasite Strongyloides stercoralis and the major laboratory model species Strongyloides ratti. Based on our findings we propose that Strongyloides from sheep and the predominant Strongyloides from cattle should be considered separate species as it had already been proposed by [Brumpt, E., 1921. Recherches sur le determinisme des sexes et de l''evolution des Anguillules parasites (Strongyloides). Comptes rendu hebdomadaires des seances et memoires de la Societe de Biologie et de ses filiales 85, 149-152], but was largely ignored by later authors. For nomenclature, we follow [Brumpt, E., 1921. Recherches sur le determinisme des sexes et de l''evolution des Anguillules parasites (Strongyloides). Comptes rendu hebdomadaires des seances et memoires de la Societe de Biologie et de ses filiales 85, 149-152] and use the name S. papillosus for the Strongyloides of sheep and the name Strongyloides vituli for the predominant Strongyloides of cattle.
-
[
Worm Breeder's Gazette,
1994]
mab-3 YAC rescue David Zarkower, Mario de Bono, and Jonathan Hodgkin MRC Laboratory of Molecular Biology, Cambridge, England
-
[
Worm Breeder's Gazette,
1994]
Mutagenesis of C. elegans using N-ethyl-N-nitrosourea Elizabeth De Stasio, Dinesh Stanislaus and Catherine Lephoto. Department of Biology, Lawrence University, Appleton, Wl 54911
-
[
Mol Cell Biol,
2004]
Iron-sulfur (Fe/S) proteins are located in mitochondria, cytosol, and nucleus. Mitochondrial Fe/S proteins are matured by the iron-sulfur cluster (ISC) assembly machinery. Little is known about the formation of Fe/S proteins in the cytosol and nucleus. A function of mitochondria in cytosolic Fe/S protein maturation has been noted, but small amounts of some ISC components have been detected outside mitochondria. Here, we studied the highly conserved yeast proteins Isu1p and Isu2p, which provide a scaffold for Fe/S cluster synthesis. We asked whether the Isu proteins are needed for biosynthesis of cytosolic Fe/S clusters and in which subcellular compartment the Isu proteins are required. The Isu proteins were found to be essential for de novo biosynthesis of both mitochondrial and cytosolic Fe/S proteins. Several lines of evidence indicate that Isu1p and Isu2p have to be located inside mitochondria in order to perform their function in cytosolic Fe/S protein maturation. We were unable to mislocalize Isu1p to the cytosol due to the presence of multiple, independent mitochondrial targeting signals in this protein. Further, the bacterial homologue IscU and the human Isu proteins (partially) complemented the defects of yeast Isu protein-depleted cells in growth rate, Fe/S protein biogenesis, and iron homeostasis, yet only after targeting to mitochondria. Together, our data suggest that the Isu proteins need to be localized in mitochondria to fulfill their functional requirement in Fe/S protein maturation in the cytosol.
-
[
Nature,
2002]
Behavioral ecologists have shown that many animals form social groups in conditions. Neurobiological evidence for this behaviour has now been discovered in the nematode worm, Caenorhabditis elegans. On pages 899 and 925 of this issue, de Bono et al. and Coates and de Bono present striking results on the genetic, molecular and neural mechanisms underlying nematode social feeding. These discoveries provide tantalizing insights into the effects of stress in social groupings.
-
Stegmann APA, Bonati MT, Panis B, Smith-Hicks C, Lemke JR, Pepler A, Wilson C, Iascone M, McWalter K, Brasington C, Allen W, Di Donato N, Platzer K, Ramos L, Edwards SL, Jamra R, Gamble CN, Mandel H, Stobe P, Mahida S, Marquardt T, Demmer LA, Miller KG, Falik-Zaccai T, Pinz H, Hellenbroich Y, Sticht H, Kok F, Cho MT, Stumpel CTRM, Shinde DN, Angione KM
[
Am J Hum Genet,
2018]
Using exome sequencing, we have identified de novo variants in MAPK8IP3 in 13 unrelated individuals presenting with an overlapping phenotype of mild to severe intellectual disability. The de novo variants comprise six missense variants, three of which are recurrent, and three truncating variants. Brain anomalies such as perisylvian polymicrogyria, cerebral or cerebellar atrophy, and hypoplasia of the corpus callosum were consistent among individuals harboring recurrent de novo missense variants. MAPK8IP3 has been shown to be involved in the retrograde axonal-transport machinery, but many of its specific functions are yet to be elucidated. Using the CRISPR-Cas9 system to target six conserved amino acid positions in Caenorhabditis elegans, we found that two of the six investigated human alterations led to a significantly elevated density of axonal lysosomes, and five variants were associated with adverse locomotion. Reverse-engineering normalized the observed adverse effects back to wild-type levels. Combining genetic, phenotypic, and functional findings, as well as the significant enrichment of de novo variants in MAPK8IP3 within our total cohort of 27,232 individuals who underwent exome sequencing, we implicate de novo variants in MAPK8IP3 as a cause of a neurodevelopmental disorder with intellectual disability and variable brain anomalies.
-
[
J Biol Chem,
2007]
The biological methyl donor, S adenosylmethionine (AdoMet), can exist in two diastereoisomeric states with respect to its sulfonium ion. The "S" configuration, (S,S)AdoMet, is the only form that is produced enzymatically as well as the only form used in almost all biological methylation reactions. Under physiological conditions, however, the sulfonium ion can spontaneously racemize to the "R" form, producing (R,S)AdoMet. As of yet, (R,S)AdoMet has no known physiological function and may inhibit cellular reactions. In this study, two enzymes have been found in Saccharomyces cerevisiae that are capable of recognizing (R,S)AdoMet and using it to methylate homocysteine to form methionine. These enzymes are the products of the SAM4 and MHT1 genes, previously identified as homocysteine methyltransferases dependent upon AdoMet and S-methylmethionine respectively. We find here that Sam4 recognizes both (S,S) and (R,S)AdoMet, but its activity is much higher with the R,S form. Mht1 reacts with only the R,S form of AdoMet while no activity is seen with the S,S form. R,S-specific homocysteine methyltransferase activity is also shown here to occur in extracts of Arabidopsis thaliana, Drosophila melanogaster, and Caenorhabditis elegans, but has not been detected in several tissue extracts of Mus musculus. Such activity may function to prevent the accumulation of (R,S)AdoMet in these organisms.
-
[
J Am Soc Mass Spectrom,
2015]
De novo sequencing software has been widely used in proteomics to sequence new peptides from tandem mass spectrometry data. This study presents a new software tool, Novor, to greatly improve both the speed and accuracy of today's peptide de novo sequencing analyses. To improve the accuracy, Novor's scoring functions are based on two large decision trees built from a peptide spectral library with more than 300,000 spectra with machine learning. Important knowledge about peptide fragmentation is extracted automatically from the library and incorporated into the scoring functions. The decision tree model also enables efficient score calculation and contributes to the speed improvement. To further improve the speed, a two-stage algorithmic approach, namely dynamic programming and refinement, is used. The software program was also carefully optimized. On the testing datasets, Novor sequenced 7%-37% more correct residues than the state-of-the-art de novo sequencing tool, PEAKS, while being an order of magnitude faster. Novor can de novo sequence more than 300 MS/MS spectra per second on a laptop computer. The speed surpasses the acquisition speed of today's mass spectrometer and, therefore, opens a new possibility to de novo sequence in real time while the spectrometer is acquiring the spectral data. Graphical Abstract .
-
[
PLoS Genet,
2017]
Density-Enhanced Phosphatase-1 (DEP-1) de-phosphorylates various growth factor receptors and adhesion proteins to regulate cell proliferation, adhesion and migration. Moreover,
dep-1/scc1 mutations have been detected in various types of human cancers, indicating a broad tumor suppressor activity. During C. elegans development, DEP-1 mediates binary cell fate decisions by negatively regulating EGFR signaling. Using a substrate-trapping DEP-1 mutant in a proteomics approach, we have identified the C. elegans -integrin subunit PAT-3 as a specific DEP-1 substrate. DEP-1 selectively de-phosphorylates tyrosine 792 in the membrane-proximal NPXY motif to promote integrin activation via talin recruitment. The non-phosphorylatable -integrin mutant
pat-3(Y792F) partially suppresses the hyperactive EGFR signaling phenotype caused by loss of
dep-1 function. Thus, DEP-1 attenuates EGFR signaling in part by de-phosphorylating Y792 in the -integrin cytoplasmic tail, besides the direct de-phosphorylation of the EGFR. Furthermore, in vivo FRAP analysis indicates that the -integrin/talin complex attenuates EGFR signaling by restricting receptor mobility on the basolateral plasma membrane. We propose that DEP-1 regulates EGFR signaling via two parallel mechanisms, by direct receptor de-phosphorylation and by restricting receptor mobility through -integrin activation.