[
Methods Cell Biol,
2012]
In Caenorhabdatis elegans as in other animals, fat regulation reflects the outcome of behavioral, physiological, and metabolic processes. The amenability of C. elegans to experimentation has led to utilization of this organism for elucidating the complex homeostatic mechanisms that underlie energy balance in intact organisms. The optical advantages of C. elegans further offer the possibility of studying cell biological mechanisms of fat uptake, transport, storage, and utilization, perhaps in real time. Here, we discuss the rationale as well as advantages and potential pitfalls of methods used thus far to study metabolism and fat regulation, specifically triglyceride metabolism, in C. elegans. We provide detailed methods for visualization of fat depots in fixed animals using histochemical stains and in live animals by vital dyes. Protocols are provided and discussed for chloroform-based extraction of total lipids from C. elegans homogenates used to assess total triglyceride or phospholipid content by methods such as thin-layer chromatography or used to obtain fatty acid profiles by methods such as gas chromatography/mass spectrometry. Additionally, protocols are provided for the determination of rates of intestinal fatty acid uptake and fatty acid breakdown by -oxidation. Finally, we discuss methods for determining rates of de novo fat synthesis and Raman scattering approaches that have recently been employed to investigate C. elegans lipids without reliance on invasive techniques. As the C. elegans fat field is relatively new, we anticipate that the indicated methods will likely be improved upon and expanded as additional researchers enter this field.
[
1987]
Since the last review in this series [Johnson, 1985], many papers have appeared dealing directly with the aging process in both Caenorhabditis elegans and Turbatrix aceti. We will review this work and also briefly review other areas of C. elegans research that may impact on the study of aging. C. elegans has become a major biological model; four "News" articles in Science [Lewin, 1984a,b; Marx, 1984a,b] and inclusion as one of three developmental genetics models in a recent text [Wilkins, 1986] indicate its importance. Recent work has verified earlier results and has advanced progress toward new goals, such as routine molecular cloning. The aging studies reviewed here, together with new findings from other areas of C. elegans research, lay the groundwork for rapid advances in our understanding of aging in nematodes. Several areas of research in C. elegans have been reviewed recently: the genetic approach to understanding the cell lineage [Sternberg and Horvitz, 1984] and a brief summary of cell lineage mutants [Hedgecock, 1985]. The specification of neuronal development and neural connectivity has been a continuing theme in C. elegans research and reviews of these areas have also appeared [Chalfie, 1984; White, 1985]. A major genetic advance is the development of reliable, if not routine, mosaic analysis [Herman, 1984; Herman and Kari, 1985], which is useful for the genetic analysis of tissue-limited gene expression. Hodgkin [1985] reviews studies on a series of mutants involved in the specification of sex. These include her mutations that cause XO worms (normally males) to develop as hermaphrodites and tra mutations that change XX hermaphrodites into phenotypic males. The work on the structure and development of nematode muscle has been summarized by Waterston and Francis [1985]. A comprehensive review of aging research, containing useful reference material on potential biomarkers, has appeared [Johnson and Simpson, 1985], as well as a review including
[
1987]
To my knowledge, a theory of "developmentally programmed aging" has never been explicitly stated, although the notion that aging has some relationship to development has certainly been proposed many times. In the preceding chapter (36), Dr. Hayflick has made a brief description of the central idea of developmental programming within aging. In order to discuss relevant evidence in this chapter, I would like to propose the following, somewhat more specific and operational definition: The theory of developmentally programmed aging posits that aging involves events controlled in ways recognizably similar to those that operate during development. This definition is perhaps a little less extreme than it might have been, since it uses the phrase "aging involves events" rather than the phrase "aging is caused by events." However, I think it captures most of the usual connotations of "developmentally programmed aging," and it at least has the virtue of testability. Of course, to test the theory, as defined, requires evidence of several sorts. In particular, it requires (a) that we understand how some aging events are controlled, (b) that we understand how some developmental events are controlled, and (c) that we know how to recognize whether there is or is not similarity between the two. A central message of what follows is that we are really only at the beginning of being able to test this theory, although some lines of approach do appear