-
[
1983]
The advantages of the free-living nematode Caenrohabditis elegans as a model for pharmacologic, toxicant and anthelmintic testing have become apparent to many companies, and the application of this organism as a primary screen for test compounds or toxic agents has expanded rapidly. It is appropriate to briefly summarize some of this nematode's qualities, to invoke an appreciation of this elegant system. As true of many invertebrate test organisms, C. elegans is small (about 1 mm X 40 u at maturity) and has a short life cycle: reproduction starts on day 3-4, ceases by day 14 and by day 25 it dies. Thus, for aging studies, all the symptoms of senescence are compressed into a short time period. In addition, this nematode has a small, fixed number of cells (about 830 at maturity) and differentiated organ systems: nervous, excretory, muscular, digestive and reproductive. The preceding characteristics are not unique in invertebrate model systems and their enumeration fails to explain the increasing popularity of C. elegans as a test organism. To understand this phenomenon several additional facts must be emphasized. First, the selection of C. elegans for detailed studies on the genetic control and regulation of behavior and developmental processes has fostered a wealth of knowledge on its neuroanatomy, cell lineages, biochemistry and behavior. There is now undoubtedly more accumulated knowledge on C. elegans than on any other multicellular creature. It is also the largest metazoan which can be continuously cultured on a chemically defined medium, and though most studies have proceeded on undefined media or in monoxenic culture (utilizing a bacterium as a food source), this property can be exploited for precise nutritional studies. In regard to aging studies, the question of relevance of aging in the nematode to that in mammals has been answered in respect to some parameters which characterize senescence in humans, and further study will define other features of aging which are common to all metazoa. In practical terms, this means that test which require 24-36 months to rear an aged rat for evaluation of a pharmaceutical, can potentially be accomplished in 21 days using the nematode. The paper emphasizes that the use of the C. elegans system as a primary screen for candidate compounds to intervene in the aging process can save time, effort and money, while
-
The International Microgravity Laboratory #1 Spacelab mission was launched on 22-Jan-1992 for an 8-day mission. The Radiat experiment was one of 17 investigations which used the ESA Biorack on IML-1 and it had two objectives. The first objective was to isolate and characterize mutations induced by cosmic rays; the second was to assess the fidelity of development in 0-gravity over two consecutive generations. Two strategies were used to isolate mutations in a set of essential genes or a specific gene and to correlate the genetic events with the passage of charged particles. The results were isolation of 60 lethal mutations whose phenotypes are related to the local pattern of energy deposition. 12 mutations in the
unc-22 gene include large deletions as characterized by DNA hybridization studies. Development of nematodes proceeded through two consecutive generations with no obvious defects. Cytoplasmic determinants in embryos, nuclear location and symmetry of cellular anatomy were normal as were Mendelian segregation and recombination of
-
[
2000]
Computer tracking of Caenorhabditis elegans, a free-living soil nematode, is a promising tool to assess behavioral changes upon exposure to contaminants. A short life cycle, a known genetic make-up, thoroughly studied behavior, and a completely mapped nervous system make C. elegans an attractive soil test organism with many advantages over the commonly used earthworm. Although many toxicity tests have been performed with C. elegans, the majority focused on mortality, a much less sensitive endpoint than behavior. A computer tracking system has been developed to monitor behavioral changes using C. elegans. Because conditions unrelated to specific toxicant exposures, such as changes in temperature, developmental stage, and presence of adequate food sources, can affect behavior, there is a need to standardize tracking procedures. To this end, we have developed reference charts for control movement comparing the movement of four and five day-old adult nematodes. The use of K-medium versus deionized (DI) H2O for pre-tracking rinses was also investigated. A final reference chart compared the behavioral responses of nematodes at various food densities (i.e. bacterial concentrations).
-
[
WormBook,
2005]
Cell-division control affects many aspects of development. Caenorhabditis elegans cell-cycle genes have been identified over the past decade, including at least two distinct Cyclin-Dependent Kinases (CDKs), their cyclin partners, positive and negative regulators, and downstream targets. The balance between CDK activation and inactivation determines whether cells proceed through G 1 into S phase, and from G 2 to M, through regulatory mechanisms that are conserved in more complex eukaryotes. The challenge is to expand our understanding of the basic cell cycle into a comprehensive regulatory network that incorporates environmental factors and coordinates cell division with growth, differentiation and tissue formation during development. Results from several studies indicate a critical role for CKI-1 , a CDK inhibitor of the Cip/Kip family, in the temporal control of cell division, potentially acting downstream of heterochronic genes and dauer regulatory pathways.
-
[
WormBook,
2006]
Through genetic analyses, the function of genes is investigated by studying organisms where gene function is altered. In classical forward genetic screening, individuals are treated with mutagens to induce DNA lesions and mutants with a phenotype of interest are sought. After a mutant is found, the gene mutated is identified through standard molecular techniques. Detailed studies of the mutant phenotype coupled with molecular analyses of the gene allows elucidation of the gene's function. Forward genetics has been responsible for our understanding of many biological processes and is an excellent method for identifying genes that function in a particular process.In reverse genetics, the functional study of a gene starts with the gene sequence rather than a mutant phenotype. Using various techniques, a gene's function is altered and the effect on the development or behaviour of the organism is analysed. Reverse genetics is an important complement to forward genetics. For example, using reverse genetics, one can investigate the function of all genes in a gene family, something not easily done with forward genetics. Further, one can study the function of a gene found to be involved in a process of interest in another organism, but for which no forward genetic mutants have yet been identified. Finally, the vast majority of genes have not yet been mutated in most organisms and reverse genetics allows their study. The availability of complete genome sequences combined with reverse genetics can allow every gene to be studied.This chapter gives detailed protocols for the two main methods of perturbing gene function in C. elegans: RNA interference and the creation of deletion mutants. Either technique can be applied to the study of individual genes. With less than a day of actual work, RNAi creates a knockdown of gene function without altering the organism's DNA (see below). In contrast, with about a month of work, a deletion mutation permanently removes all gene function. Deciding which technique to use will depend on the nature of the experiment. The techniques can also be combined, where RNAi is used for rapid screening of loss of function phenotypes and then deletion mutants are made to study genes of particular interest. RNAi can also be carried out on a global scale, where knockdown of (nearly) every gene is tested for inducing a phenotype of interest. In this case, the reverse genetics technique of RNAi can be thought of as a forward genetic screening tool.
-
[
WormBook,
2006]
There are two sexes in C. elegans, hermaphrodite and male. While there are many sex-specific differences between males and hermaphrodites that affect most tissues, the basic body plan and many of its structures are identical. However, most structures required for mating or reproduction are sexually dimorphic and are generated by sex-specific cell lineages. Thus to understand cell fate specification in hermaphrodites, one must consider how the body plan, which is specified during embryogenesis, influences the fates individual cells. One possible mechanism may involve the asymmetric distribution of POP-1 /Tcf, the sole C. elegans Tcf homolog, to anterior-posterior sister cells. Another mechanism that functions to specify cell fates along the anterior-posterior body axis in both hermaphrodites and males are the Hox genes. Since most of the cell fate specifications that occur in hermaphrodites also occur in males, the focus of this chapter will be on those that only occur in hermaphrodites. This will include the cell fate decisions that affect the HSN neurons, ventral hypodermal P cells, lateral hypodermal cells V5 , V6 , and T ; as well as the mesodermal M, Z1 , and Z4 cells and the intestinal cells. Both cell lineage-based and cell-signaling mechanisms of cell fate specification will be discussed. Only two direct targets of the sex determination pathway that influence cell fate specification to produce hermaphrodite-specific cell fates have been identified. Thus a major challenge will be to learn additional mechanisms by which the sex determination pathway interacts with signaling pathways and other cell fate specification genes to generate hermaphrodite-specific cell fates.