[
Parasitol Today,
1996]
Spliced leader trans-splicing is a form of RNA processing originally described and studied in parasitic kinetoplastida. This mechanism of gene expression also occurs in parasitic and free-living metazoa. In this review, Dick Davis describes current knowledge of the distribution, substrates, specificity and functional significance of trans-splicing in metazoa.
[
Ann N Y Acad Sci,
1999]
Nervous systems of helminths are highly peptidergic. Species in the phylum Nematoda (roundworms) possess at least 50 FMRFamide-related peptides (FaRPs), with more yet to be identified. To date, few non-FaRP neuropeptides have been identified in these organisms, though evidence suggests that other families are present. FaRPergic systems have important functions in nematode neuromuscular control. In contrast, species in the phylum Platyhelminthes (flatworms) apparently utilize fewer FaRPs than do nematodes; those species examined possess one or two FaRPs. Other neuropeptides, such as neuropeptide F (NPF), play key roles in flatworm physiology. Although progress has been made in the characterization of FaRP pharmacology in helminths, much remains to be learned. Most studies on nematodes have been done with Ascaris suum because of its large size. However, thanks to the Caenorhabditis elegans genome project, we know most about the FaRP complement of this free-living animal. That essentially all C. elegans FaRPs are active on at least one A. suum neuromuscular system argues for conservation of ligand-receptor recognition features among the Nematoda. Structure-activity studies on nematode FaRPs have revealed that structure-activity relationship (SAR) "rules" differ considerably among the FaRPs. Second messenger studies, along with experiments on ionic dependence and anatomical requirements for activity, reveal that FaRPs act through many different mechanisms. Platyhelminth FaRPs are myoexcitatory, and no evidence exists of multiple FaRP receptors in flatworms. Interestingly, there are examples of cross-phylum activity, with some nematode FaRPs being active on flatworm muscle. The extent to which other invertebrate FaRPs show cross-phylum activity remains to be determined. How FaRPergic nerves contribute to the control of behavior in helminths, and are integrated with non-neuropeptidergic systems, also remains to be elucidated.
[
Exp Gerontol,
2006]
In Caenorhabditis elegans, the insulin/IGF-1 signaling pathway controls many biological processes such as life span, fat storage, dauer diapause, reproduction and stress response . This pathway is comprised of many genes including the insulin/IGF-1 receptor (DAF-2) that signals through a conserved PI 3-kinase/AKT pathway and ultimately down-regulates DAF-16, a forkhead transcription factor (FOXO). DAF-16 also receives input from several other pathways that regulate life span such as the germline and the JNK pathway [Hsin, H., Kenyon, C., 1999. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399, 362-366; Oh, S.W., Mukhopadhyay, A., Svrzikapa, N., Jiang, F., Davis, R.J., Tissenbaum, H.A., 2005. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc. Natl. Acad. Sci. USA 102, 4494-4499]. Therefore, DAF-16 integrates signals from multiple pathways and regulates its downstream target genes to control diverse processes. Here, we discuss the signals to and from DAF-16, with a focus on life span regulation.