-
[
Worm Breeder's Gazette,
1994]
mab-3 YAC rescue David Zarkower, Mario de Bono, and Jonathan Hodgkin MRC Laboratory of Molecular Biology, Cambridge, England
-
[
BMC Biol,
2018]
David Weinkove is an associate professor at Durham University, UK, studying host-microbe interactions in the model organism Caenorhabditis elegans. David has been focusing on the way microbes affect the physiology of their hosts, including the process of aging. In this interview, he discusses the questions shaping his research, how they evolved over the years, and his guiding principles for leading a lab.
-
[
Worm Breeder's Gazette,
1992]
unc-4 LacZ expression in A-type motor neurons David M. Miller and Charles J. Niemeyer, Dept. of Cell Biology, Duke Univ. Medical Ctr, Durham, NC 27710
-
[
Worm Breeder's Gazette,
1993]
DIFFERENTIAL EFFECTS OF DAUER-DEFECTIVE MUTATIONS ON L1- SPECIFIC SURFACE ANTIGEN SWITCHING. David G. Grenache and Samuel M. Politz, Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA.
-
[
Worm Breeder's Gazette,
1994]
Strain names for non-C. elegans species Scott W. Emmonst, Armand Leroit, and David Fitch, Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, Department of Biology, New York University, RmlOO9 Main Bldg., Washington Square, New York, NY 10003
-
[
Zootaxa,
2022]
Rhagovelia medinae sp. nov., of the hambletoni group (angustipes complex), and R. utria sp. nov., of the hirtipes group (robusta complex), are described, illustrated, and compared with similar congeners. Based on the examination of type specimens, six new synonymies are proposed: R. elegans Uhler, 1894 = R. pediformis Padilla-Gil, 2010, syn. nov.; R. cauca Polhemus, 1997 = R. azulita Padilla-Gil, 2009, syn. nov., R. huila Padilla-Gil, 2009, syn. nov., R. oporapa Padilla-Gil, 2009, syn. nov, R. quilichaensis Padilla-Gil, 2011, syn. nov.; and R. gaigei, Drake Hussey, 1947 = R. victoria Padilla-Gil, 2012 syn. nov. The first record from Colombia is presented for R. trailii (White, 1879), and the distributions of the following species are extended in the country: R. cali Polhemus, 1997, R. castanea Gould, 1931, R. cauca Polhemus, 1997, R. gaigei Drake Hussey, 1957, R. elegans Uhler, 1894, R. femoralis Champion, 1898, R. malkini Polhemus, 1997, R. perija Polhemus, 1997, R. sinuata Gould, 1931, R. venezuelana Polhemus, 1997, R. williamsi Gould, 1931, and R. zeteki Drake, 1953.
-
[
Worm Breeder's Gazette,
1994]
Cytology of degenerin-induced cell death in the PVM neuron David H. Hall, Guoqiang Gu+, Lei Gong#, Monica Driscoll#, and Martin Chalfie+, * Dept. Neuroscience, Albert Einstein College of Medicine, Bronx, N.Y. 10461 + Dept. Biological Sciences, Columbia University, New York, N.Y. 10027 # Dept. Molecular Biology and Biochemistry, Rutgers University, Piscataway, N.J. 08855
-
[
J Vis Exp,
2017]
Next generation sequencing (NGS) technologies have revolutionized the nature of biological investigation. Of these, RNA Sequencing (RNA-Seq) has emerged as a powerful tool for gene-expression analysis and transcriptome mapping. However, handling RNA-Seq datasets requires sophisticated computational expertise and poses inherent challenges for biology researchers. This bottleneck has been mitigated by the open access Galaxy project that allows users without bioinformatics skills to analyze RNA-Seq data, and the Database for Annotation, Visualization, and Integrated Discovery (DAVID), a Gene Ontology (GO) term analysis suite that helps derive biological meaning from large data sets. However, for first-time users and bioinformatics' amateurs, self-learning and familiarization with these platforms can be time-consuming and daunting. We describe a straightforward workflow that will help C. elegans researchers to isolate worm RNA, conduct an RNA-Seq experiment and analyze the data using Galaxy and DAVID platforms. This protocol provides stepwise instructions for using the various Galaxy modules for accessing raw NGS data, quality-control checks, alignment, and differential gene expression analysis, guiding the user with parameters at every step to generate a gene list that can be screened for enrichment of gene classes or biological processes using DAVID. Overall, we anticipate that this article will provide information to C. elegans researchers undertaking RNA-Seq experiments for the first time as well as frequent users running a small number of samples.
-
[
Science,
2002]
As any homeowner knows, timely maintenance is vital for keeping a building functioning properly after construction is finished. The same is evidently true for the complex architecture of the nervous system - at least in the roundworm. On page 686, neuroscientists Oliver Hobert, Oscar Aurelio, and David Hall describe a new family of proteins that help keep the wiring of the worm's nervous system tangle free.
-
[
J Biol Chem,
1990]
The nematode Caenorhabditis elegans (C. elegans) expresses the regulatory subunit (R) of cAMP-dependent protein kinase at a level similar to the levels determined for R subunits in mammalian tissues. Approximately 60% of the C. elegans cAMP-binding protein is tightly associated with particulate structures by noncovalent interactions. Ionic detergents or 7 M urea solubilize particulate R. Solubilized and cytosolic R subunits have apparent Mr values of 52,000 and pI values of 5.5. cDNA and genomic DNA encoding a unique C. elegans R subunit were cloned and sequenced. The derived amino acid sequence contains 375 residues; carboxyl-terminal residues 145-375 are 69% identical with mammalian RI. However, residues 44-145 are markedly divergent from the corresponding regions of all other R sequences. This region might provide sufficient structural diversity to adapt a single R subunit for multiple functional roles in C. elegans. Antibodies directed against two epitopes in the deduced amino acid sequence of C. elegans R avidly bound nematode cytosolic and particulate R subunits on Western blots and precipitated dissociated R subunits and R2C2 complexes from solution. Immunofluorescence analysis revealed that the tip of the head, which contains chemosensory and mechanosensory neurons, and the pharyngeal nerve ring were enriched in R. The R subunit concentration is low during early embryogenesis in C. elegans. A sharp increase (approximately 6-fold) in R content begins several hours before the nematodes hatch and peaks during the first larval stage. Developmental regulation of R expression occurs at translational and/or post-translational levels. The 8-kilobase pair C. elegans R gene is divided into 8 exons by introns ranging from 46 to 4300 base pairs. The 5'-flanking region has no TATA box and contains preferred and minor transcription start sites.