-
[
Mol Biochem Parasitol,
1998]
Polyamines are essential for cell growth and differentiation and therefore, S-adenosylmethionine decarboxylase (SAMDC), a key regulatory enzyme of the polyamine biosynthesis, is considered as a potentially important target for chemotherapy of filarial infections. Recombinant Onchocerca volvulus SAMDC was expressed in Escherichia coli and characterised. The enzyme activity was found to be stimulated 15-fold by addition of 1 mM putrescine. The Km-value for S-adenosylmethionine was determined to be 36 microM. Furthermore, the efficiencies of SAMDC inhibitors were analysed: Berenil inhibits the enzyme activity competitively with a Ki-value of 0.1 microM. MDL 73811 acts as an irreversible inhibitor with a Ki-value of 1.4 microM. Recently synthesised aromatic methylglyoxal bis(guanylhydrazone) analogues demonstrated high efficacy as inhibitors of the SAMDCs. Some of these analogues exhibited Ki-values of 5 and 14 nM for the Onchocerca enzyme, a result which shows an up to 100-fold increase in specificity compared to the value of 0.47 microM for methylglyoxal bis(guanylhydrazone). These inhibitors might have potential as drug candidates against filarial worms.
-
[
Biochem J,
1998]
S-Adenosylmethionine decarboxylase (SAMDC) is a major regulatory enzyme in the polyamine biosynthesis and is considered a potentially important drug target for the chemotherapy of proliferative and parasitic diseases. To study regulatory mechanisms which are involved in the expression of SAMDC of the free-living nematode Caenorhabditis elegans, we have isolated the SAMDC gene and cDNA. Genomic Southern-blot analysis suggests that the C. elegans SAMDC is encoded by a single-copy gene which spans 3.9 kb and consists of six exons and five introns. The first two introns are located in the 5'-untranslated region (UTR). Analyses of the 5'-flanking region of the gene revealed several consensus sequences for the binding of different transcription factors such as CBP, AP2, cMyb, VPE2 and others. The C. elegans SAMDC mRNA possesses an open reading frame (ORF) which encodes a polypeptide of 368 amino acids, corresponding to a SAMDC proenzyme with a calculated molecular mass of 42141 Da. The active form of the C. elegans SAMDC is a heterotetramer, consisting of two subunits of 32 and 10 kDa derived from cleavage of the pro-enzyme. The SAMDC mRNA has an unusually long 5'-UTR of 477 nucleotides. This region has a small ORF which could encode a putative peptide of 17 residues. Moreover, the C. elegans SAMDC mRNA is trans-spliced with the 22 nucleotides spliced leader sequence at the 5'-end.
-
[
Biol Chem,
2003]
S-Adenosylmethionine decarboxylase (AdoMetDC) is a key enzyme of the polyamine synthetic pathway providing decarboxylated S-adenosylmethionine for the formation of spermidine and spermine, respectively. The catalytic activity of the AdoMetDC from the free living nematode Caenorhabditis elegans highly depends on the presence of an activator molecule. Putrescine, a well-known stimulator of mammalian AdoMetDC activity, enhances the catalytic activity of the nematode enzyme 350-fold. Putrescine stimulation is discussed as a regulatory mechanism to relate putrescine abundance with the synthesis of spermidine and spermine. In contrast to any other known AdoMetDC, spermidine and spermine also represent significant activators of the nematode enzyme. However, the biological significance of the observed stimulation by these higher polyamines is unclear. Although C. elegans AdoMetDC exhibits a low specificity toward activator molecules, the amino acid residues that were shown to be involved in putrescine binding of the human enzyme are conserved in the nematode enzyme. Exchanging these residues by sitedirected mutagenesis indicates that at least three residues, Thr(192), Glu(194) and Glu(274), most likely contribute to activator binding in the C. elegans AdoMetDC. Interestingly, the mutant Glu(194)Gln exhibits a 100-fold enhanced basal activity in the absence of any stimulator, suggesting that this mutant protein mimics the conformational change usually induced by activator molecules. Furthermore, site directed mutagenesis revealed that at least Glu(33), Ser(83), Arg(91) and Lys(95) are involved in posttranslational processing of C. elegans
-
Pennington PR, Heistad RM, Nyarko JNK, Barnes JR, Bolanos MAC, Parsons MP, Knudsen KJ, De Carvalho CE, Leary SC, Mousseau DD, Buttigieg J, Maley JM, Quartey MO
[
Sci Rep,
2021]
The pool of -Amyloid (A) length variants detected in preclinical and clinical Alzheimer disease (AD) samples suggests a diversity of roles for A peptides. We examined how a naturally occurring variant, e.g. A(1-38), interacts with the AD-related variant, A(1-42), and the predominant physiological variant, A(1-40). Atomic force microscopy, Thioflavin T fluorescence, circular dichroism, dynamic light scattering, and surface plasmon resonance reveal that A(1-38) interacts differently with A(1-40) and A(1-42) and, in general, A(1-38) interferes with the conversion of A(1-42) to a -sheet-rich aggregate. Functionally, A(1-38) reverses the negative impact of A(1-42) on long-term potentiation in acute hippocampal slices and on membrane conductance in primary neurons, and mitigates an A(1-42) phenotype in Caenorhabditis elegans. A(1-38) also reverses any loss of MTT conversion induced by A(1-40) and A(1-42) in HT-22 hippocampal neurons and APOE 4-positive human fibroblasts, although the combination of A(1-38) and A(1-42) inhibits MTT conversion in APOE 4-negative fibroblasts. A greater ratio of soluble A(1-42)/A(1-38) [and A(1-42)/A(1-40)] in autopsied brain extracts correlates with an earlier age-at-death in males (but not females) with a diagnosis of AD. These results suggest that A(1-38) is capable of physically counteracting, potentially in a sex-dependent manner, the neuropathological effects of the AD-relevant A(1-42).
-
[
Worm Breeder's Gazette,
2003]
Wormgenes is a new resource for C.elegans offering a detailed summary about each gene and a powerful query system.
-
[
Front Pharmacol,
2020]
Oligomeric assembly of Amyloid- (A) is the main toxic species that contribute to early cognitive impairment in Alzheimer's patients. Therefore, drugs that reduce the formation of A oligomers could halt the disease progression. In this study, by using transgenic <i>Caenorhabditis elegans</i> model of Alzheimer's disease, we investigated the effects of frondoside A, a well-known sea cucumber <i>Cucumaria frondosa</i> saponin with anti-cancer activity, on A aggregation and proteotoxicity. The results showed that frondoside A at a low concentration of 1 M significantly delayed the worm paralysis caused by A aggregation as compared with control group. In addition, the number of A plaque deposits in transgenic worm tissues was significantly decreased. Frondoside A was more effective in these activities than ginsenoside-Rg3, a comparable ginseng saponin. Immunoblot analysis revealed that the level of small oligomers as well as various high molecular weights of A species in the transgenic <i>C. elegans</i> were significantly reduced upon treatment with frondoside A, whereas the level of A monomers was not altered. This suggested that frondoside A may primarily reduce the level of small oligomeric forms, the most toxic species of A. Frondoside A also protected the worms from oxidative stress and rescued chemotaxis dysfunction in a transgenic strain whose neurons express A. Taken together, these data suggested that low dose of frondoside A could protect against A-induced toxicity by primarily suppressing the formation of A oligomers. Thus, the molecular mechanism of how frondoside A exerts its anti-A aggregation should be studied and elucidated in the future.
-
[
International Journal of Developmental Biology,
1998]
Pleiotropy , a situation in which a single gene influences multiple phenotypic tra its, can arise in a variety of ways. This paper discusses possible underlying mechanisms and proposes a classification of the various phenomena involved.
-
[
Curr Biol,
2011]
Recent work on a Caenorhabditis elegans transmembrane ATPase reveals a central role for the aminophospholipid phosphatidylethanolamine in the production of a class of extracellular vesicles.
-
[
Naturwissenschaften,
2004]
Animals respond to signals and cues in their environment. The difference between a signal (e.g. a pheromone) and a cue (e.g. a waste product) is that the information content of a signal is subject to natural selection, whereas that of a cue is not. The model free-living nematode Caenorhabditis elegans forms an alternative developmental morph (the dauer larva) in response to a so-called 'dauer pheromone', produced by all worms. We suggest that the production of 'dauer pheromone' has no fitness advantage for an individual worm and therefore we propose that 'dauer pheromone' is not a signal, but a cue. Thus, it should not be called a pheromone.
-
[
J Antibiot (Tokyo),
1990]
Cochlioquinone A, isolated from the fungus Helminthosporium sativum, was found to have nematocidal activity. Cochlioquinone A is a competitive inhibitor of specific [3H]ivermectin binding suggesting that cochlioquinone A and ivermectin interact with the same membrane receptor.