-
[
Science,
2001]
The dynamic glycosylation of serine or threonine residues on nuclear and cytosolic proteins by O-linked beta-N-acetylglucosamine (O-GlcNAc) is abundant in all multicellular eukaryotes. On several proteins, O-GlcNAc and O-phosphate alternatively occupy the same or adjacent sites, leading to the hypothesis that one function of this saccharide is to transiently block phosphorylation. The diversity of proteins modified by O-GlcNAc implies its importance in many basic cellular and disease processes. Here we systematically examine the current data implicating O-GlcNAc as a regulatory modification important to signal transduction cascades.
-
[
Biochem Biophys Res Commun,
2003]
Beta-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of nuclear and cytosolic proteins. The enzymes for its addition and removal have recently been cloned and partially characterized. While only about 80 mammalian proteins have been identified to date that carry this modification, it is clear that this represents just a small percentage of the modified proteins. O-GlcNAc has all the properties of a regulatory modification including being dynamic and inducible. The modification appears to modulate transcriptional and signal transduction events. There are also accruing data that O-GlcNAc plays a role in apoptosis and neurodegeneration. A working model is emerging that O-GlcNAc serves as a metabolic sensor that attenuates a cell's response to extracellular stimuli based on the energy state of the cell. In this review, we will focus on the enzymes that add/remove O-GlcNAc, the functional impact of O-GlcNAc modification, and the current working model for O-GlcNAc as a nutrient sensor.
-
[
J Neurochem,
2017]
Proteostasis is essential in the mammalian brain where post-mitotic cells must function for decades to maintain synaptic contacts and memory. The brain is dependent on glucose and other metabolites for proper function and is spared from metabolic deficits even during starvation. In this review, we outline how the nutrient sensitive nucleocytoplasmic posttranslational modification O-linked N-acetylglucosamine (O-GlcNAc) regulates protein homeostasis. The O-GlcNAc modification is highly abundant in the mammalian brain, and has been linked to proteopathies, including neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's. C. elegans, Drosophila, and mouse models harboring O-GlcNAc transferase and O-GlcNAcase knockout (KO) alleles have helpeddefine the role O-GlcNAc plays in development as well as age-associated neurodegenerative disease. These enzymes add and remove the single monosaccharide from protein serine and threonine residues, respectively. Blocking O-GlcNAc cycling is detrimental to mammalian brain development and interferes with neurogenesis, neural migration, and proteostasis. Findings in C. elegans and Drosophila model systems indicate that the dynamic turnover of O-GlcNAc is critical for maintaining levels of key transcriptional regulators responsible forneurodevelopment cellfate decisions. In addition, pathways of autophagy and proteasomal degradation depend on a transcriptional network that is also reliant on O-GlcNAc cycling.Like the quality control system in the endoplasmic reticulum which uses a "mannose-timer" to monitor protein folding, we propose that cytoplasmic proteostasis relies on an "O-GlcNAc timer" to help regulate the lifetime and fate of nuclear and cytoplasmic proteins. O-GlcNAc-dependent developmental alterations impact metabolism and growth of the developing mouse embryo and persist into adulthood. Brain-selective KO mouse models will be an important tool for understanding the role of O-GlcNAc in the physiology of the brain and its susceptibility to neurodegenerative injury. This article is protected by copyright. All rights reserved.
-
[
Chromosoma,
2015]
O-linked -N-Acetylglucosamine (O-GlcNAc) is a posttranslational modification that is catalyzed by O-GlcNAc transferase (Ogt) and found on a plethora of nuclear and cytosolic proteins in animals and plants. Studies in different model organisms revealed that while O-GlcNAc is required for selected processes in Caenorhabditis elegans and Drosophila, it has evolved to become required for cell viability in mice, and this has challenged investigations to identify cellular functions that critically require this modification in mammals. Nevertheless, a principal cellular process that engages O-GlcNAcylation in all of these species is the regulation of gene transcription. Here, we revisit several of the primary experimental observations that led to current models of how O-GlcNAcylation affects gene expression. In particular, we discuss the role of the stable association of Ogt with the transcription factors Hcf1 and Tet, the two main Ogt-interacting proteins in nuclei of mammalian cells. We also critically evaluate the evidence that specific residues on core histones, including serine 112 of histone 2B (H2B-S112), are O-GlcNAcylated in vivo and discuss possible physiological effects of these modifications. Finally, we review our understanding of the role of O-GlcNAcylation in Drosophila, where recent studies suggest that the developmental defects in Ogt mutants are all caused by lack of O-GlcNAcylation of a single transcriptional regulator, the Polycomb repressor protein Polyhomeotic (Ph). Collectively, this reexamination of the experimental evidence suggests that a number of recently propagated models about the role of O-GlcNAcylation in transcriptional control should be treated cautiously.
-
[
Biochim Biophys Acta,
2010]
The enzymes of O-GlcNAc cycling couple the nutrient-dependent synthesis of UDP-GlcNAc to O-GlcNAc modification of Ser/Thr residues of key nuclear and cytoplasmic targets. This series of reactions culminating in O-GlcNAcylation of targets has been termed the hexosamine signaling pathway (HSP). The evolutionarily ancient enzymes of O-GlcNAc cycling have co-evolved with other signaling effecter molecules; they are recruited to their targets by many of the same mechanisms used to organize canonic kinase-dependent signaling pathways. This co-recruitment of the enzymes of O-GlcNAc cycling drives a binary switch impacting pathways of anabolism and growth (nutrient uptake) and catabolic pathways (nutrient sparing and salvage). The hexosamine signaling pathway (HSP) has thus emerged as a versatile cellular regulator modulating numerous cellular signaling cascades influencing growth, metabolism, cellular stress, circadian rhythm, and host-pathogen interactions. In mammals, the nutrient-sensing HSP has been harnessed to regulate such cell-specific functions as neutrophil migration, and activation of B-cells and T-cells. This review summarizes the diverse approaches being used to examine O-GlcNAc cycling. It will emphasize the impact O-GlcNAcylation has upon signaling pathways that may be become deregulated in diseases of the immune system, diabetes mellitus, cancer, cardiovascular disease, and neurodegenerative diseases.
-
[
Annu Rev Biochem,
2004]
Researchers have long predicted that complex carbohydrates on cell surfaces would play important roles in developmental processes because of the observation that specific carbohydrate structures appear in specific spatial and temporal patterns throughout development. The astounding number and complexity of carbohydrate structures on cell surfaces added support to the concept that glycoconjugates would function in cellular communication during development. Although the structural complexity inherent in glycoconjugates has slowed advances in our understanding of their functions, the complete sequencing of the genomes of organisms classically used in developmental studies (e.g., mice, Drosophila melanogaster, and Caenorhabditis elegans) has led to demonstration of essential functions for a number of glycoconjugates in developmental processes. Here we present a review of recent studies analyzing function of a variety of glycoconjugates (O-fucose, O-mannose, N-glycans, mucin-type O-glycans, proteoglycans, glycosphingolipids), focusing on lessons learned from human disease and genetic studies in mice, D. melanogaster, and C. elegans.
-
[
Parasitology,
2000]
The bovine parasite Onchocerca ochengi is a nodule-dwelling filarial nematode, closely related to O. volvulus, the causal agent of human River Blindness, and, sharing with it, the same vector. This brief review, based on a presentation at the BSP Autumn Symposium 1999, describes recent work supported by the WHO Drug Development Research Macrofil programme and the Edna McConnell Clark Foundation vaccine development programme, to research the chemotherapy and immunology of onchocerciasis utilising this model system, with experimental infections in Liverpool and field infections in northern Cameroon. In a series of chemotherapeutic trials involving 10 compounds in 20 treatment regimes, the comparability of drug efficacy against O. ochengi with that described against O. volvulus has been demonstrated. Repeated, long-term treatment with oxytetracycline has been shown to be macrofilaricidal and the effect is hypothesized to be related to action on Wolbachia endobacteria, abundant in O. ochengi. Avermectins/milbemycins are not macrofilaricidal (even in high and repeated long-term treatments) but induce sustained abrogation of embryogenesis. In prospective, field exposure experiments with naive calves, prophylactic treatments with ivermectin and moxidectin prevented the development of adult worm infection, raising the possibility that drug-attenuated larval challenge infections may induce immunity. Putatively immune adult cattle exist in endemically exposed populations, and these have been shown to be significantly less susceptible to challenge than age-matched naive controls, whereas radically drug-cured, previously patently-infected cattle were not. Experimental infections with O. ochengi have revealed the kinetics of the immune response in relation to parasite development and demonstrate analogous responses to those reported in O. volvulus infection in humans and chimpanzees. In an immunization experiment with irradiated L3 larvae, cattle were significantly protected against experimental challenge--the first such demonstration of the experimental induction of immunity in a natural Onchocerca host-parasite system. Taken collectively, these studies not only demonstrate the similarity between the host-parasite relationships of O. ochengi in cattle and O. volvulus in humans, but promise to advance options for the control of human onchocerciasis.
-
[
Subcell Biochem,
2008]
Coronins are highly conserved among species, but their function is far from being understood in detail. Here we will introduce members of the family of coronin like proteins from Drosophila melanogaster, Caenorhabditis elegans and the social amoeba Dictyostelium discoideum. Genetic data from D. discoideum and D. melanogaster revealed that coronins in general are important regulators of many actin-dependent processes.
-
[
Biochim Biophys Acta,
2009]
Phospholipase D (PLD) catalyses the hydrolysis of phosphatidylcholine to generate phosphatidic acid and choline. Historically, much PLD work has been conducted in mammalian settings although genes encoding enzymes of this family have been identified in all eukaryotic organisms. Recently, important insights on PLD function are emerging from work in yeast, but much less is known about PLD in other organisms. In this review we will summarize what is known about phospholipase D in several model organisms, including C. elegans, D. discoideum, D. rerio and D. melanogaster. In the cases where knockouts are available (C. elegans, Dictyostelium and Drosophila) the PLD gene(s) appear not to be essential for viability, but several studies are beginning to identify pathways where this activity has a role. Given that the proteins in model organisms are very similar to their mammalian counterparts, we expect that future studies in model organisms will complement and extend ongoing work in mammalian settings. At the end of this review we will also provide a short update on phosphatidic acid targets, a topic last reviewed in 2006.
-
[
Pflugers Arch,
2015]
Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (1.5mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of 14A. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology.