[
MicroPubl Biol,
2021]
We used whole-genome sequencing (WGS) data from a number of balanced lethal strains in Caenorhabditis elegans to show that the crossover suppressor qC1 is an inversion. The rearrangement is complex, with a large primary inversion that contains several other smaller inverted regions. The graphical representation below depicts these various qC1 rearrangements for ease of conceptualization. It is the simplest chromosomal structure compatible with the data currently available, but even then it is worth noting that the complexity of the qC1 chromosome can make the graphical reconstruction difficult to understand, and it may seem a bit like relativity theory or artwork from M.C. Escher (https://moa.byu.edu/m-c-eschers-relativity/).
[
Mol Cell Biol,
2010]
Prolonged cellular hypoxia results in energy failure and ultimately cell death. However, less-severe hypoxia can induce a cytoprotective response termed hypoxic preconditioning (HP). The unfolded protein response pathway (UPR) has been known for some time to respond to hypoxia and regulate hypoxic sensitivity; however, the role of the UPR, if any, in HP essentially has been unexplored. We have shown previously that a sublethal hypoxic exposure of the nematode Caenorhabditis elegans induces a protein chaperone component of the UPR (L. L. Anderson, X. Mao, B. A. Scott, and C. M. Crowder, Science 323:630-633, 2009). Here, we show that HP induces the UPR and that the pharmacological induction of misfolded proteins is itself sufficient to stimulate a delayed protective response to hypoxic injury that requires the UPR pathway proteins IRE-1, XBP-1, and ATF-6. HP also required IRE-1 but not XBP-1 or ATF-6; instead, GCN-2, which is known to suppress translation and induce an adaptive transcriptional response under conditions of UPR activation or amino acid deprivation, was required for HP. The phosphorylation of the translation factor eIF2, an established mechanism of GCN-2-mediated translational suppression, was not necessary for HP. These data suggest a model where hypoxia-induced misfolded proteins trigger the activation of IRE-1, which along with GCN-2 controls an adaptive response that is essential to HP.