-
[
MicroPubl Biol,
2017]
Early embryos were fixed and stained with Mab F2F4 (green), shown to recognize CYB-3 (Michael, 2016), and DAPI, to illuminate the DNA (blue). Either wild type or
par-4 mutant embryos were examined, after 24-hour incubation at 25C (the non-permissive temperature for the
it47 allele of
par-4). Anterior is to the left in all images. The data presented here reveals previously not shown data that depicts CYB-3 as asymmetrically distributed at the 4-cell stage. These data further support reported findings in Michael, 2016. There is more CYB-3 in the AB cell relative to its sister P1. In 4-cell embryos there is more CYB-3 in the EMS cell relative to its sister, P2. Thus, during P-lineage divisions, CYB-3 is asymmetrically distributed such that the somatic precursor receives more than its germline precursor sister cell. This asymmetry is abolished in
par-4 mutant embryos, where all blastomeres contain equivalent amounts of CYB-3.
-
Medeiros A, Fontan P, Jancik V, Melendrez J, Saiz C, Vairoletti F, Tabarez C, Mahler G, Franco J, Salinas G, Comini MA, Saldana J
[
Medchemcomm,
2019]
1,4-Thiazepines derivatives are pharmacologically important heterocycles with different applications in medicinal chemistry. In the present work, we describe the preparation of new bicyclic thiazolidinyl-1,4-thiazepines <b>3</b> by reaction between azadithiane compounds and Michael acceptors. The reaction scope was explored and the yields were optimized. The activity of the new compounds was evaluated against <i>Nippostrongylus brasiliensis</i> and <i>Caenorhabditis elegans</i> as anthelmintic models and <i>Trypanosoma brucei brucei.</i> The most active compound was <b>3l</b>, showing an EC<sub>50</sub> = 2.8 +/- 0.7 M against <i>T. b. brucei</i> and a selectivity index >71.
-
[
Parasitol Today,
1994]
How cell lineages are established during development in higher eukaryotes is being addressed by geneticists and by developmental and molecular biologists. In Drosophila melanogaster, a gene corresponding to a germ-line-specific RNA helicase, vasa, has been shown to be a component o f the posteriorly localized germ granules o f the developing embryo. A putative RNA helicase, glh-I r which appears germ-line specific in its expression, has recently been reported from the free-living nematode Caenorhabditis elegans. Parasitologists studying the nematode Ascaris lumbricoides var. suum have found it to be a useful complement to Caenorhabditis. Deborah Roussell, Michael Gruidl and Karen Bennett predict that Ascaris will be valuable in determining the role played by germ-line helicases in development.
-
[
Mech Ageing Dev,
2007]
An explanation is offered for the increased lifespan of Caenorhabditis elegans when mRNA translation is inhibited due to loss of the initiation factor IFE-2 [Hansen, M., Taubert, T., Crawford, D., Libina, N., Lee, S.-J., Kenyon, C., 2007. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Ageing Cell 6, 95-110; Pan, K.Z., Palter, J.E., Rogers, A.N., Olsen, A., Chen, D., Lithgow, G.J., Kapahi, P., 2007. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Ageing Cell 6, 111-119; Syntichaki, P., Troulinaki, K., Tavernarakis, N., 2007. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature 445, 922-926]. It is suggested that the general reduction of protein synthesis, due to the decreased frequency of mRNA translation, also lowers the cellular load of erroneously synthesized polypeptides which the constitutive protein homeostatic apparatus (proteases and chaperones proteins) normally eliminates. This situation results in "spare" proteolytic and chaperone function which can then deal with those proteins modified post-synthetically, e.g. by oxidation and/or glycation, which are thought to contribute to the senescent phenotype. This increased availability of proteolytic and chaperone functions may thereby contribute to the observed increase in organism stress resistance and lifespan.
-
Sternberg PW, Ansell BRE, Andrews KT, Nowell C, Chang BCH, Hofmann A, Crawford S, Korhonen PK, Baell J, Gijs MAM, Fisher GM, Young ND, Preston S, Mouchiroud L, Gasser RB, Jabbar A, Auwerx J, Davis RA, McGee SL, Cornaglia M
[
FASEB J,
2017]
As a result of limited classes of anthelmintics and an over-reliance on chemical control, there is a great need to discover new compounds to combat drug resistance in parasitic nematodes. Here, we show that deguelin, a plant-derived rotenoid, selectively and potently inhibits the motility and development of nematodes, which supports its potential as a lead candidate for drug development. Furthermore, we demonstrate that deguelin treatment significantly increases gene transcription that is associated with energy metabolism, particularly oxidative phosphorylation and mito-ribosomal protein production before inhibiting motility. Mitochondrial tracking confirmed enhanced oxidative phosphorylation. In accordance, real-time measurements of oxidative phosphorylation in response to deguelin treatment demonstrated an immediate decrease in oxygen consumption in both parasitic (Haemonchus contortus) and free-living (Caenorhabditis elegans) nematodes. Consequently, we hypothesize that deguelin is exerting its toxic effect on nematodes as a modulator of oxidative phosphorylation. This study highlights the dynamic biologic response of multicellular organisms to deguelin perturbation.-Preston, S., Korhonen, P. K., Mouchiroud, L., Cornaglia, M., McGee, S. L., Young, N. D., Davis, R. A., Crawford, S., Nowell, C., Ansell, B. R. E., Fisher, G. M., Andrews, K. T., Chang, B. C. H., Gijs, M. A. M., Sternberg, P. W., Auwerx, J., Baell, J., Hofmann, A., Jabbar, A., Gasser, R. B. Deguelin exerts potent nematocidal activity via the mitochondrial respiratory chain.
-
[
FEMS Yeast Res,
2018]
Candida albicans, one most prevalent fungal pathogen, causes severe mucosal and invasive infections in predisposed individuals. The rise of fungal infection and drug-resistance demands the development of novel antifungal agents. In this study, we observed that floricolin C (FC), a p-terphenyl pigment from an endolichenic fungus, killed C. albicans cells at planktonic state or within biofilms through reactive oxygen species (ROS) accumulation. Further test revealed that FC could directly damage the mitochondria to cause ROS accumulation. In addition, FC can quench thiol-based agents through a Michael reaction involving the ,-unsaturated carbonyl group, whose effect may chelate intracellular thiol-based molecules or proteins in C. albicans, resulting in imbalance of redox homeostasis. Increased ROS generation led to mitochondria dysfunction, nuclear dispersion, and consequently cell death. We further demonstrated that FC could prevent biofilm formation of other Candida species and eradicate their pre-formed biofilms. In vivo study demonstrated that FC prolonged the survival of C. albicans-infected Caenorhabditis elegans. Taken together, our study provides a basis for the application of FC to combat Candida infections.
-
[
PLoS One,
2011]
BACKGROUND: Many bacteria, including Vibrio spp., regulate virulence gene expression in a cell-density dependent way through a communication process termed quorum sensing (QS). Hence, interfering with QS could be a valuable novel antipathogenic strategy. Cinnamaldehyde has previously been shown to inhibit QS-regulated virulence by decreasing the DNA-binding ability of the QS response regulator LuxR. However, little is known about the structure-activity relationship of cinnamaldehyde analogs. METHODOLOGY/PRINCIPAL FINDINGS: By evaluating the QS inhibitory activity of a series of cinnamaldehyde analogs, structural elements critical for autoinducer-2 QS inhibition were identified. These include an , unsaturated acyl group capable of reacting as Michael acceptor connected to a hydrophobic moiety and a partially negative charge. The most active cinnamaldehyde analogs were found to affect the starvation response, biofilm formation, pigment production and protease production in Vibrio spp in vitro, while exhibiting low cytotoxicity. In addition, these compounds significantly increased the survival of the nematode Caenorhabditis elegans infected with Vibrio anguillarum, Vibrio harveyi and Vibrio vulnificus. CONCLUSIONS/SIGNIFICANCE: Several new and more active cinnamaldehyde analogs were discovered and they were shown to affect Vibrio spp. virulence factor production in vitro and in vivo. Although ligands for LuxR have not been identified so far, the nature of different cinnamaldehyde analogs and their effect on the DNA binding ability of LuxR suggest that these compounds act as LuxR-ligands.
-
Kirshner A, Eddins D, French R, Helmcke K, Page GP, Linney E, Lnenicka G, Berger K, Welsh-Bohmer KA, Corl AB, Levin ED, Hirsch HV, Aschner M, Bartlett S, Possidente B, Hayden KM, Chen L, Possidente D, Ruden D, Heberlein U
[
Neurotoxicology,
2009]
Considerable progress has been made over the past couple of decades concerning the molecular bases of neurobehavioral function and dysfunction. The field of neurobehavioral genetics is becoming mature. Genetic factors contributing to neurologic diseases such as Alzheimer's disease have been found and evidence for genetic factors contributing to other diseases such as schizophrenia and autism are likely. This genetic approach can also benefit the field of behavioral neurotoxicology. It is clear that there is substantial heterogeneity of response with behavioral impairments resulting from neurotoxicants. Many factors contribute to differential sensitivity, but it is likely that genetic variability plays a prominent role. Important discoveries concerning genetics and behavioral neurotoxicity are being made on a broad front from work with invertebrate and piscine mutant models to classic mouse knockout models and human epidemiologic studies of polymorphisms. Discovering genetic factors of susceptibility to neurobehavioral toxicity not only helps identify those at special risk, it also advances our understanding of the mechanisms by which toxicants impair neurobehavioral function in the larger population. This symposium organized by Edward Levin and Annette Kirshner, brought together researchers from the laboratories of Michael Aschner, Douglas Ruden, Ulrike Heberlein, Edward Levin and Kathleen Welsh-Bohmer conducting studies with Caenorhabditis elegans, Drosophila, fish, rodents and humans studies to determine the role of genetic factors in susceptibility to behavioral impairment from neurotoxic exposure.
-
[
Parasitol Res,
2019]
A novel library of synthetic piperidine derivatives was used to screen against human lymphatic filarial parasite Brugia malayi. Piperidine has earlier been reported to have effect against parasites including rodent filarial nematodes. Compounds with hydroxyl substitutions (4Q and 4H) showed marked antifilarial effect. Molecular docking of 4H derivative showed more favorable thermodynamic parameters against thymidylate synthase of B. malayi than human counterpart. A wide difference between IC<sub>50</sub> and LD<sub>50</sub> ensured the therapeutic safety of the candidates against the filarial parasites. Addition of thymidine to the treatment regimen led to a significant reversal of antifilarial effect of 4H that confirmed inhibition of thymidylate synthase as pharmacological rationale. Apoptosis induced in the parasite as a consequence of probable inhibition of thymidylate synthase was studied by acridine orange/ethidium bromide fluorescent staining and poly (ADP-ribose) polymerase activity inhibition. Involvement of mitochondria was confirmed by decreased 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) conversion and increased cytosolic cytochrome c level in 4H treated microfilariae, compared with the untreated microfilariae. Moreover, Michael adduct of chalcone targeting dihydrofolate reductase and piperidine targeting thymidylate synthase demonstrated synergistic effect on the parasite, indicating the importance of inhibition of DNA synthesis by combined effect. In conclusion, piperidine derivatives with hydroxyl substitution have a great therapeutic potential with an apoptotic rationale involving mitochondrial pathway, due to possible inhibition of parasitic thymidylate synthase.