-
[
Metabolites,
2021]
Prostaglandins comprise a family of lipid signaling molecules derived from polyunsaturated fatty acids and are involved in a wide array of biological processes, including fertilization. Prostaglandin-endoperoxide synthase (a.k.a. cyclooxygenase or Cox) initiates prostaglandin synthesis from 20-carbon polyunsaturated fatty acids, such as arachidonic acid. Oocytes of Caenorhabditis elegans (C. elegans) have been shown to secrete sperm-guidance cues prostaglandins, independent of Cox enzymes. Both prostaglandin synthesis and signal transduction in C. elegans are environmentally modulated pathways that regulate sperm guidance to the fertilization site. Environmental factors such as food triggers insulin and TGF-B secretion and their levels regulate tissue-specific prostaglandin synthesis in C. elegans. This novel PG pathway is abundant in mouse and human ovarian follicular fluid, where their functions, mechanism of synthesis and pathways remain to be established. Given the importance of prostaglandins in reproductive processes, a better understanding of how diets and other environmental factors influence their synthesis and function may lead to new strategies towards improving fertility in mammals.
-
[
1983]
In 1974, Sydney Brenner published an elegant paper that described the genetic system of Caenorhabditis elegans and led to its use in research on a wide variety of topics, including aging (Brenner, 1974). Its small size (1mm as an adult) and determinate cell lineage has allowed a description of the entire somatic cell lineage from the one-cell stage to the adult (Sulston and Horvitz, 1977; Deppe et al., 1978; Kimble and Hirsh, 1979; Suslton et al., personal communication). Its ease of culture makes it an organism of choice for studies of various aspects of anatomy and physiology, including muscle formation and function (Zengel and Epstein, 1980; Mackenzie and Epstein, 1980), cuticle formation (Cox et al, 1981), neuroanatomy (Ward et al, 1975; Ware et al, 1975; Sulston et al, 1975), and behavior (Dusenbery, 1980). Several genes have been cloned by recombinant DNA techniques ablation (Kimble, 1981; Laufer and von Ehrenstin, 1981) procedures, as well as most of the modern molecular techniques, are in use.
-
[
J Clin Med,
2016]
The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction and in neurons, however, specific roles for either omega-3 or omega-6 fatty acids are beginning to emerge. Recent findings with importance to human health include the identification of a conserved Cox-independent prostaglandin synthesis pathway, critical functions for cytochrome P450 derivatives of polyunsaturated fatty acids, the requirements for omega-6 and omega-3 fatty acids in sensory neurons, and the importance of fatty acid desaturation for long lifespan. Furthermore, the ability of C. elegans to interconvert omega-6 to omega-3 fatty acids using the FAT-1 omega-3 desaturase has been exploited in mammalian studies and biotechnology approaches to generate mammals capable of exogenous generation of omega-3 fatty acids.
-
[
Adv Exp Med Biol,
1988]
Parasite-specific putrescine-N-acetyltransferase and polyamine oxidase, both involved in the reversed pathway of polyamine metabolism, were demonstrated for Ascaris suum and Onchocerca volvulus. Berenil-treatment was found to be correlated with accumulation of polyamines, especially spermine, obviously due to blockaded polyamine interconversion. Furthermore it was shown that added spermine to the culture medium led to the death of worms. These specificities might be exploited for chemotherapy of filarial infections. Polyamines are widely distributed in the nature. They are found in higher and lower eucaryotes and in procaryotes as well as in viruses (Tabor and Tabor, 1984). During the last years there have been many approaches to examine the role of polyamines in cell growth and differentiation in vertebrates (Tabor and Tabor, 1984; Pegg, 1986). The polyamine metabolism of parasites also has attracted increasing interest, e.g. in African trypanosomes the initial enzyme of polyamine synthesis - ornithine decarboxylase - has been exploited as a target for chemotherapy by using DFMO (DL alpha-difluoromethylornithine) (Bacchi et al., 1980; Bacchi et al., 1983; Fairlamb et al., 1985; Giffin et al., 1986). The polyamine metabolism of filaria and other helminths is still a neglected area of research, although there are reports about distribution pattern of polyamines and some peculiarities of polyamine metabolism in filarial worms (Srivastava et al., 1980; Wittich et al., 1987; Walter, 1988). DFMO and MGBG (methylglyoxal bis-(guanylhydrazone], both of which are potent inhibitors of polyamine synthesis in mammals, do not significantly effect the viability of filarial worms (Wittich et al., 1987).(ABSTRACT TRUNCATED AT 250 WORDS)