-
Sorrentino V, Deplancke B, Ouhmad T, Cornaglia M, Gijs MA, Auwerx J, Williams EG, Krishnamani G, Frochaux MV, Nicolet-Dit-Felix AA, Lin T, Mouchiroud L
[
Curr Protoc Neurosci,
2016]
Phenotyping strategies in simple model organisms such as D. melanogaster and C. elegans are often broadly limited to growth, aging, and fitness. Recently, a number of physical setups and video tracking software suites have been developed to allow for accurate, quantitative, and high-throughput analysis of movement in flies and worms. However, many of these systems require precise experimental setups and/or fixed recording formats. We report here an update to the Parallel Worm Tracker software, which we termed the Movement Tracker. The Movement Tracker allows variable experimental setups to provide cross-platform automated processing of a variety of movement characteristics in both worms and flies and permits the use of simple physical setups that can be readily implemented in any laboratory. This software allows high-throughput processing capabilities and high levels of flexibility in video analysis, providing quantitative movement data on C. elegans and D. melanogaster in a variety of different conditions. 2016 by John Wiley and Sons, Inc.
-
[
1960]
For the purpose of the present chapter the noun 'cultivation' is to be taken as the maintenance, in the laboratory, of a population of organisms belonging to a desired species through successive generations and subcultures over a prolonged period of time (weeks, months, or years). This is a deliberate restriction of the term. The noun 'culture' is most aptly used for a population within a circumscribed vessel or container (test-tube, Petri dish, U.S. Bureau of Plant Industry watch glass, etc.); it is also used in a looser, more general way (as "in culture") to cover conditions of substantial growth whether or not leading to cultivation in the strict sense
-
[
Methods Cell Biol,
1995]
Geneticists like to point out that the ultimate test of a proposed function for a gene and its encoded product (or products) in a living organism involves making a mutant and analyzing its phenotype. This is the goal of reverse genetics: a gene is cloned and sequenced, its transcripts and protein coding sequence are analyzed, and a function may be proposed; one must then introduce a mutation in the gene in a living organism to see what the functional consequences are. The analysis of genetic mosaics takes this philosophy a step further. In mosaics, some cells of an individual are genotypically mutant and other cells are genotypically wild type. One then asks what the phenotypic consequences are for the living organism. This is not the same as asking what cells transcribe the gene or in what cells the protein product of the gene is to be found, but rather it is asking in what cells the wild-type gene is needed for a given function...
-
[
1990]
Induction of the C. elegans vulva is a simple example of pattern formation in which the combined action of two intercellular signals specifies three cell types in a precise spatial pattern. These two signals, a graded inductive signal and a short-range lateral signal, are each mediated by a distinct genetic pathway. To understand how these intercellular signals specify cell type, we are studying, by genetic analysis and molecular cloning, genes whose products are involved in the induction pathway.
-
[
Methods Cell Biol,
1995]
In studying embryos of many species, methods of fragmenting and culturing embryonic tissues or cells have been useful for addressing questions of blastomere autonomy in early and later embryogenesis, for exposure to drugs or other agents that perturb specific processes, and for direct labeling of DNA or RNA. For Caenorhabditis elegans workers, the small size of the embryo and the impermeability of the chitinous eggshell and inner vitelline membrane have made such experiments difficult. A method of permeabilization and blastomere isolation, a culture system that will support further cellular development and differentiation, and assay methods for assaying the degree of development and its relative normality after experimental manipulation are minimal requirements for a satisfactory C. elegans embryonic culture system. Methods of isolating early blastomeres have included crushing of the eggshell and extrusion, laser ablation of neighboring blastomeres within an itact eggshell, laser puncturing of the eggshell producing extrusion, and digestion of the eggshell followed by shearing or manual stripping of the vitelline membrane. This last method is described in detail below. Permeabilization of complete embryos can be achieved by the same methods; in addition, one-cell embryos within the shell can be permeabilized to certain drugs such as cytochalasin D by gentle pressure on an overlying
-
[
2000]
Computer tracking of Caenorhabditis elegans, a free-living soil nematode, is a promising tool to assess behavioral changes upon exposure to contaminants. A short life cycle, a known genetic make-up, thoroughly studied behavior, and a completely mapped nervous system make C. elegans an attractive soil test organism with many advantages over the commonly used earthworm. Although many toxicity tests have been performed with C. elegans, the majority focused on mortality, a much less sensitive endpoint than behavior. A computer tracking system has been developed to monitor behavioral changes using C. elegans. Because conditions unrelated to specific toxicant exposures, such as changes in temperature, developmental stage, and presence of adequate food sources, can affect behavior, there is a need to standardize tracking procedures. To this end, we have developed reference charts for control movement comparing the movement of four and five day-old adult nematodes. The use of K-medium versus deionized (DI) H2O for pre-tracking rinses was also investigated. A final reference chart compared the behavioral responses of nematodes at various food densities (i.e. bacterial concentrations).
-
[
Methods Cell Biol,
1995]
The number of easily distinguishable mutant phenotypes in Caenorhabditis elegans is relatively small, and this constrains the number of factors that can be followed in standard genetic crosses. Consequently, a new mutation is mapped, first to a chromosome using two-factor data from one or more crosses, and then to a chromosomal subregion by successive three-factor crosses. Mapping would be more efficient if it were possible to score a large number of well-distributed markers in a single cross. The advent of the polymerase chain reaction makes this approach feasible by allowing polymorphic genomic regions to serve as genetic markers that are easily scored in DNA released from individual animals. The only "phenotype" is a band on a gel, so the segregation of many of these markers can be followed in a single cross. Following the terminology proposed by Olsen et al. (1989), we refer to polymorphisms that can be scored by appropriately designed polymerase chain reaction (PCR) assays as polymorphic seqeunce-tagged sites (STSs)...
-
[
1985]
At first sight the inclusion of a chapter on Caenorhabditis elegans in a volume on cell biology may seem unusual. However this nematode has been a superb model system for a number of cell biology studies as well as a useful model of aging. This widespread interest in C. elegans is engendered in large part by its genetic system and its optical clarity in Nomarski phase-contrast optics. Nematodes have long been a system in wide use among experimental gerontologists, and with the introduction of C. elegans by Brenner in 1974, this species has become the nematode of choice for most aging studies. We concentrate primarily on C. elegans in this review although a number of other speices, including Caenorhabditis briggsae, Turbatrix aceti, and Panagrellus redivivus, have been used in aging studies also. Other reviews on aging in C. elegans have appeared recently, including a more detailed review in another volume of this series.
-
[
Lecture Notes in Computer Science,
2008]
One of the most tractable organisms for the study of nervous systems is the nematode Caenorhabditis elegans, whose locomotion in particular has been the subject of a number of models. In this paper we present a first integrated neuro-mechanical model of forward locomotion. We find that a previous neural model is robust to the addition of a body with mechanical properties, and that the integrated model produces oscillations with a more realistic frequency and waveform than the neural model alone. We conclude that the body and environment are likely to be important components of the worms locomotion subsystem.
-
[
WormBook,
2005]
Synaptogenesis is a process involving the formation of a neurotransmitter release site in the presynaptic neuron and a receptive field at the postsynaptic partners, and the precise alignment of pre- and post-synaptic specializations. In C. elegans synapses are found as en passant axonal swellings along the nerve processes. Genetic screens using a synaptic vesicle-associated GFP marker have identified key players in synaptic target recognition and organization of the presynaptic terminals. Importantly, the functions of most genes are evolutionarily conserved. Further studies using a combination of genetic modifier screens and reverse genetics have begun to reveal the underlying signaling pathways.