-
[
Sci Total Environ,
2020]
This study aims to investigate the neuroprotective effects of 6-feruloylspinosin (6-FS), one of the main active flavonoid components in Sour Jujube seeds, on beta-amyloid (A) protein transgenic Caenorhabditis elegans (GMC101) and PC12 cells, and determine the molecular mechanism of its action. We found that 6-FS could ameliorate the progression of the Alzheimer's disease (AD) phenotype by delaying the aging, decreasing the rate of paralysis, enhancing resistance to heat stress, and increasing the chemotaxis ability, and promotes autophagy activity though autophagy/lysosome pathway in GMC101. Furthermore, 6-FS reduced A-induced toxicity by inhibiting the deposition of A and the aggregated proteins, increasing the level of mitophagy in PC12 through promoting the expression of Pink1/Parkin in the mitophagy pathway. Our findings suggest that 6-FS may be used as a medicinal supplement for treating AD.
-
[
Nat Methods,
2023]
Our understanding of nerve regeneration can be enhanced by delineating its underlying molecular activities at single-neuron resolution in model organisms such as Caenorhabditis elegans. Existing cell isolation techniques cannot isolate neurons with specific regeneration phenotypes from C. elegans. We present femtosecond laser microdissection (fs-LM), a single-cell isolation method that dissects specific cells directly from living tissue by leveraging the micrometer-scale precision of fs-laser ablation. We show that fs-LM facilitates sensitive and specific gene expression profiling by single-cell RNA sequencing (scRNA-seq), while mitigating the stress-related transcriptional artifacts induced by tissue dissociation. scRNA-seq of fs-LM isolated regenerating neurons revealed transcriptional programs that are correlated with either successful or failed regeneration in wild-type and
dlk-1 (0) animals, respectively. This method also allowed studying heterogeneity displayed by the same type of neuron and found gene modules with expression patterns correlated with axon regrowth rate. Our results establish fs-LM as a spatially resolved single-cell isolation method for phenotype-to-genotype mapping.
-
[
J Biomed Opt,
2015]
The primary goal of this study is to demonstrate that stimulated Raman scattering (SRS) as a new imaging modality can be integrated into a femtosecond (fs) nonlinear optical (NLO) microscope system. The fs sources of high pulse peak power are routinely used in multimodal nonlinear microscopy to enable efficient excitation of multiple NLO signals. However, with fs excitations, the SRS imaging of subcellular lipid and vesicular structures encounters significant interference from proteins due to poor spectral resolution and a lack of chemical specificity, respectively. We developed a unique NLO microscope of fs excitation that enables rapid acquisition of SRS and multiple two-photon excited fluorescence (TPEF) signals. In the in vivo imaging of transgenic C. elegans animals, we discovered that by cross-filtering false positive lipid signals based on the TPEF signals from tryptophan-bearing endogenous proteins and lysosome-related organelles, the imaging system produced highly accurate assignment of SRS signals to lipid. Furthermore, we demonstrated that the multimodal NLO microscope system could sequentially image lipid structure/content and organelles, such as mitochondria, lysosomes, and the endoplasmic reticulum, which are intricately linked to lipid metabolism.
-
[
Methods Mol Biol,
2015]
While traditional chemical fixation methods for C. elegans electron microscopy (EM) have provided invaluable anatomical and structural information, the development of high-pressure freeze (HPF) and freeze substitution (FS) protocols offers advantages for high-resolution imaging. Specimens prepared using HPF methodology exhibit fewer distortion artifacts due to fixation and dehydration, have improved antigenicity, and result in a more physiologically accurate structural representation of the worm. In the HPF technique, freely moving worms are frozen at high-pressure (2100 bar) and low temperature (-180 C) within milliseconds. These conditions prevent the formation of ice crystals that can damage cellular structures. Samples then undergo FS, during which worms are slowly brought to room temperature while substituting amorphous ice with organic solvents to preserve tissue in its near native state and provide contrast for imaging. FS can be performed in an automatic freeze substitution (AFS) machine or in makeshift, temperature controlled chambers. Fixed worms can be embedded in plastic resin and further processed for a variety of imaging techniques. Samples then viewed using scanning (SEM) or transmission electron microscopy (TEM) will show enhanced preservation of organelles, cell morphology, and antigenicity for immunocytochemistry.
-
[
J Microsc,
2008]
The early Caenorhabditis elegans embryo is currently a popular model system to study centrosome assembly, kinetochore organization, spindle formation, and cellular polarization. Here, we present and review methods for routine electron microscopy and 3D analysis of the early C. elegans embryo. The first method uses laser-induced chemical fixation to preserve the fine structure of isolated embryos. This approach takes advantage of time-resolved fixation to arrest development at specific stages. The second method uses high-pressure freezing of whole worms followed by freeze-substitution (HPF-FS) for ultrastructural analysis. This technique allows staging of developing early embryos within the worm uterus, and has the advantage of superior sample preservation required for high-resolution 3D reconstruction. The third method uses a correlative approach to stage isolated, single embryos by light microscopy followed by HPF-FS and electron tomography. This procedure combines the advantages of time-resolved fixation and superior ultrastructural preservation by high-pressure freezing and allows a higher throughput electron microscopic analysis. The advantages and disadvantages of these methods for different applications are discussed.
-
[
BMC Bioinformatics,
2007]
BACKGROUND: Protein-protein interaction has been used to complement traditional sequence homology to elucidate protein function. Most existing approaches only make use of direct interactions to infer function, and some have studied the application of indirect interactions for functional inference but are unable to improve prediction performance. We have previously proposed an approach, FS-Weighted Averaging, which uses topological weighting and level-2 indirect interactions (protein pairs connected via two interactions) for predicting protein function from protein interactions and have found that it yields predictions with superior precision on yeast proteins over existing approaches. Here we study the use of this technique to predict functional annotations from the Gene Ontology for seven genomes: Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Rattus norvegicus, Mus musculus, and Homo sapiens. RESULTS: Our analysis shows that protein-protein interactions provide supplementary coverage over sequence homology in the inference of protein function and is definitely a complement to sequence homology. We also find that FS-Weighted Averaging consistently outperforms two classical approaches, Neighbor Counting and Chi-Square, across the seven genomes for all three categories of the Gene Ontology. By randomly adding and removing interactions from the interactions, we find that Weighted Averaging is also rather robust against noisy interaction data. CONCLUSION: We have conducted a comprehensive study over seven genomes. We conclude that FS-Weighted Averaging can effectively make use of indirect interactions to make the inference of protein functions from protein interactions more effective. Furthermore, the technique is general enough to work over a variety of genomes.
-
[
Methods Cell Biol,
2010]
The roundworm Caenorhabditis elegans is one of the major model organisms in modern cell and developmental biology. Here, we present methods for the three-dimensional (3D) reconstruction of the worm ultrastructure. We describe the use of (1) serial-section analysis, (2) electron tomography, and (3) serial block face imaging by scanning electron microscopy (SEM). Sample preparation for high-pressure freezing/freeze substitution (HPF/FS) has been extensively covered in a previous volume of this "Methods in Cell Biology" series and will only be described briefly. We will discuss these 3D methods in light of recent research activities related to worm and early embryo biology.
-
[
Opt Lett,
2022]
We demonstrate second-harmonic generation (SHG) microscopy excited by the ∼890-nm light frequency-doubled from a 137-fs, 19.4-MHz, and 300-mW all-fiber mode-locked laser centered at 1780 nm. The mode-locking at the 1.7-um window is realized by controlling the emission peak of the gain fiber, and uses the dispersion management technique to broaden the optical spectrum up to 30 nm. The spectrum is maintained during the amplification and the pulse is compressed by single-mode fibers. The SHG imaging performance is showcased on a mouse skull, leg, and tail. Two-photon fluorescence imaging is also demonstrated on C. elegans labeled with green and red fluorescent proteins. The frequency-doubled all-fiber laser system provides a compact and efficient tool for SHG and fluorescence microscopy.
-
[
Int J Parasitol,
2007]
We report the characterisation of the first neuropeptide receptor from the phylum Platyhelminthes, an early-diverging phylum which includes a number of important human and veterinary parasites. The G protein-coupled receptor (GPCR) was identified from the model flatworm Girardia tigrina (Tricladida: Dugesiidae) based on the presence of motifs widely conserved amongst GPCRs. In two different assays utilising heterologous expression in Chinese hamster ovary cells, the Girardia GPCR was most potently activated by neuropeptides from the FMRFamide-like peptide class. The most potent platyhelminth neuropeptide in both assays was GYIRFamide, a FMRFamide-like peptide known to be present in G. tigrina. There was no activation by neuropeptide Fs, another class of flatworm neuropeptides. Also active were FMRFamide-like peptides derived from other phyla but not known to be present in any platyhelminth. Most potent among these were nematode neuropeptides encoded by the Caenorhabditis elegans
flp-1 gene which share a PNFLRFamide carboxy terminal motif. The ability of nematode peptides to stimulate a platyhelminth receptor demonstrates a degree of structural conservation between FMRFamide-like peptide receptors from these two distinct, distant phyla which contain parasitic worms.
-
[
Exp Gerontol,
2008]
The observation that long-lived and relatively healthy animals can be obtained by simple genetic manipulation prompts the search for chemical compounds that have similar effects. Since aging is the most important risk factor for many socially and economically important diseases, the discovery of a wide range of chemical modulators of aging in model organisms could prompt new strategies for attacking age-related disease such as diabetes, cancer and neurodegenerative disorders [Collins, J.J., Evason, K., Kornfeld, K., 2006. Pharmacology of delayed aging and extended lifespan of Caenorhabditis elegans. Exp. Gerontol.; Floyd, R.A., 2006. Nitrones as therapeutics in age-related diseases. Aging Cell 5, 51-57; Gill, M.S., 2006. Endocrine targets for pharmacological intervention in aging in Caenorhabditis elegans. Aging Cell 5, 23-30; Hefti, F.F., Bales, R., 2006. Regulatory issues in aging pharmacology. Aging Cell 5, 3-8]. Resistance to multiple types of stress is a common trait in long-lived genetic variants of a number of species; therefore, we have tested compounds that act as stress response mimetics. We have focused on compounds with antioxidant properties and identified those that confer thermal stress resistance in the nematode Caenorhabditis elegans. Some of these compounds (lipoic acid, propyl gallate, trolox and taxifolin) also extend the normal lifespan of this simple invertebrate, consistent with the general model that enhanced stress resistance slows aging.