-
[
2007]
An understanding of the role of TRPV4 in mammalian kidney physiology begins in the nematode C. elegans. Worms are repelled by steep osmotic gradients, an adaptive mechanism presumably conserved to minimize the risk of acute changes in cell volume. Worms with mutated copies of a particular gene, while remaining fully motile, are oblivious to potentially harmful osmotic gradients; this gene was dubbed
osm-9 [1,2]. The OSM-9 protein bore a striking similarity to the transient receptor potential channel implicated in visual signal transduction in Drosophila [3]-the prototypical member of the now well-recognized TRP superfamily [4]. Several years later, the mammalian orthologue of OSM-9 was identified via homology screening [5,6] and other approaches [7,8]; it eventually became known as TRPV4 [9].
-
[
Methods Cell Biol,
2008]
The nuclear lamina is found between the inner nuclear membrane and the peripheral chromatin. Lamins are the main components of the nuclear lamina, where they form protein complexes with integral proteins of the inner nuclear membrane, transcriptional regulators, histones and chromatin modifiers. Lamins are required for mechanical stability, chromatin organization, Pol II transcription, DNA replication, nuclear assembly, and nuclear positioning. Mutations in human lamins cause at least 13 distinct human diseases, collectively termed laminopathies, affecting muscle, adipose, bone, nerve and skin cells, and range from muscular dystrophies to accelerated aging. Caenorhabditis elegans has unique advantages in studying lamins and nuclear lamina genes including low complexity of lamina genes and the unique ability of bacterially expressed C. elegans lamin protein to form stable 10 nm fibers. In addition, transgenic techniques, simple application of RNA interference, sophisticated genetic analyses, and the production of a large collection of mutant lines, all make C. elegans especially attractive for studying the functions of its nuclear lamina genes. In this chapter we will include a short review of our current knowledge of nuclear lamina in C. elegans and will describe electron microscopy techniques used for their analyses.
-
[
1960]
For the purpose of the present chapter the noun 'cultivation' is to be taken as the maintenance, in the laboratory, of a population of organisms belonging to a desired species through successive generations and subcultures over a prolonged period of time (weeks, months, or years). This is a deliberate restriction of the term. The noun 'culture' is most aptly used for a population within a circumscribed vessel or container (test-tube, Petri dish, U.S. Bureau of Plant Industry watch glass, etc.); it is also used in a looser, more general way (as "in culture") to cover conditions of substantial growth whether or not leading to cultivation in the strict sense
-
[
Methods Cell Biol,
1995]
Geneticists like to point out that the ultimate test of a proposed function for a gene and its encoded product (or products) in a living organism involves making a mutant and analyzing its phenotype. This is the goal of reverse genetics: a gene is cloned and sequenced, its transcripts and protein coding sequence are analyzed, and a function may be proposed; one must then introduce a mutation in the gene in a living organism to see what the functional consequences are. The analysis of genetic mosaics takes this philosophy a step further. In mosaics, some cells of an individual are genotypically mutant and other cells are genotypically wild type. One then asks what the phenotypic consequences are for the living organism. This is not the same as asking what cells transcribe the gene or in what cells the protein product of the gene is to be found, but rather it is asking in what cells the wild-type gene is needed for a given function...
-
[
1990]
Induction of the C. elegans vulva is a simple example of pattern formation in which the combined action of two intercellular signals specifies three cell types in a precise spatial pattern. These two signals, a graded inductive signal and a short-range lateral signal, are each mediated by a distinct genetic pathway. To understand how these intercellular signals specify cell type, we are studying, by genetic analysis and molecular cloning, genes whose products are involved in the induction pathway.
-
[
2000]
Computer tracking of Caenorhabditis elegans, a free-living soil nematode, is a promising tool to assess behavioral changes upon exposure to contaminants. A short life cycle, a known genetic make-up, thoroughly studied behavior, and a completely mapped nervous system make C. elegans an attractive soil test organism with many advantages over the commonly used earthworm. Although many toxicity tests have been performed with C. elegans, the majority focused on mortality, a much less sensitive endpoint than behavior. A computer tracking system has been developed to monitor behavioral changes using C. elegans. Because conditions unrelated to specific toxicant exposures, such as changes in temperature, developmental stage, and presence of adequate food sources, can affect behavior, there is a need to standardize tracking procedures. To this end, we have developed reference charts for control movement comparing the movement of four and five day-old adult nematodes. The use of K-medium versus deionized (DI) H2O for pre-tracking rinses was also investigated. A final reference chart compared the behavioral responses of nematodes at various food densities (i.e. bacterial concentrations).
-
[
Methods Cell Biol,
1995]
The number of easily distinguishable mutant phenotypes in Caenorhabditis elegans is relatively small, and this constrains the number of factors that can be followed in standard genetic crosses. Consequently, a new mutation is mapped, first to a chromosome using two-factor data from one or more crosses, and then to a chromosomal subregion by successive three-factor crosses. Mapping would be more efficient if it were possible to score a large number of well-distributed markers in a single cross. The advent of the polymerase chain reaction makes this approach feasible by allowing polymorphic genomic regions to serve as genetic markers that are easily scored in DNA released from individual animals. The only "phenotype" is a band on a gel, so the segregation of many of these markers can be followed in a single cross. Following the terminology proposed by Olsen et al. (1989), we refer to polymorphisms that can be scored by appropriately designed polymerase chain reaction (PCR) assays as polymorphic seqeunce-tagged sites (STSs)...
-
[
1985]
At first sight the inclusion of a chapter on Caenorhabditis elegans in a volume on cell biology may seem unusual. However this nematode has been a superb model system for a number of cell biology studies as well as a useful model of aging. This widespread interest in C. elegans is engendered in large part by its genetic system and its optical clarity in Nomarski phase-contrast optics. Nematodes have long been a system in wide use among experimental gerontologists, and with the introduction of C. elegans by Brenner in 1974, this species has become the nematode of choice for most aging studies. We concentrate primarily on C. elegans in this review although a number of other speices, including Caenorhabditis briggsae, Turbatrix aceti, and Panagrellus redivivus, have been used in aging studies also. Other reviews on aging in C. elegans have appeared recently, including a more detailed review in another volume of this series.
-
[
Lecture Notes in Computer Science,
2008]
One of the most tractable organisms for the study of nervous systems is the nematode Caenorhabditis elegans, whose locomotion in particular has been the subject of a number of models. In this paper we present a first integrated neuro-mechanical model of forward locomotion. We find that a previous neural model is robust to the addition of a body with mechanical properties, and that the integrated model produces oscillations with a more realistic frequency and waveform than the neural model alone. We conclude that the body and environment are likely to be important components of the worms locomotion subsystem.
-
[
WormBook,
2005]
Synaptogenesis is a process involving the formation of a neurotransmitter release site in the presynaptic neuron and a receptive field at the postsynaptic partners, and the precise alignment of pre- and post-synaptic specializations. In C. elegans synapses are found as en passant axonal swellings along the nerve processes. Genetic screens using a synaptic vesicle-associated GFP marker have identified key players in synaptic target recognition and organization of the presynaptic terminals. Importantly, the functions of most genes are evolutionarily conserved. Further studies using a combination of genetic modifier screens and reverse genetics have begun to reveal the underlying signaling pathways.