[
2000]
There is growing interest in the use of bioindicators to assess metal toxicity in soil. The current ASTM Standard Guide for Conducting Laboratory Soil Toxicity Test with the lumbricid earthworm Eisenia fetida (E 1676-97) uses a common earthworm. The nematode Caenorhabditis elegans is a natural soil inhabitant with many characteristics that make an ideal alternate test organism. It has been used to assess metal toxicity in aquatic media, agar plates and in soil. Work is currently underway on the design of a C. elegans procedure for metals in soil. The objective of this study was to determine differences in LC50S between the chloride salt and the nitrate salt forms of cadmium, copper, lead, nickel, and zinc, in three types of soil: Cecil, Tifton, and ASTM artificial soil. Results indicated that the toxicological effect of the metallic salt varies and is dependent on the particular metal. For Cd and Pb the nitrate form is more toxic while Cu and Ni are more toxic in the chloride form. The composition of the soil also effected toxicity, with the metal being the least toxic in ASTM soil and more toxic in the Tifton soil. This strongly correlated with organic matter and clay content of the soil. It is important to determine the effects of carrier salt form and soil composition on metal toxicity, not only in order to standardize the protocol for C. elegans soil toxicity testing, but also in establishing acceptable exposure concentrations in the soil.
[
WormBook,
2005]
C. elegans is a member of a group of nematodes called rhabditids, which encompasses a large number of ecologically and genetically diverse species. A new, preliminary phylogenetic analysis is presented for concatenated sequences of three nuclear genes for 48 rhabditid and diplogastrid species (including 10 Caenorhabditis species), as well as four species representing the outgroup. Although many relationships are well-resolved, more data are still needed to resolve some key relationships, particularly near the base of the rhabditid tree. There is high confidence for two major clades: (1) a clade comprising Mesorhabditis Parasitorhabditis, Pelodera, Teratorhabditis plus a few other species; (2) a large clade (Eurhabditis) comprising most of the remaining rhabditid genera, including Caenorhabditis and its sistergroup Protorhabditis-Prodontorhabditis-Diploscapter. Eurhabditis also contains the parasitic strongylids, the entomopathogenic Heterorhabditis, and the monophyletic group Oscheius which includes the satellite model organism O. tipulae. The relationships within Caenorhabditis are well resolved. The analysis also suggests that rhabditids include diplogastrids, to which the second satellite model organism Pristionchus pacificus belongs. Genetic disparity within Caenorhabditis is as great as that across vertebrates, suggesting Caenorhabditis lineages are quickly evolving, ancient, or both. The phylogenetic tree can be used to reconstruct evolutionary events within rhabditids. For instance, the reproductive mode changed multiple times from gonochorism to hermaphroditism, but only once from hermaphroditism to gonochorism. Complete retraction of the male tail tip, leading to a blunt, peloderan tail, evolved at least once. Reversions to unretracted tail tips occurred within both major rhabditid groups. The phylogeny also provides a guide to species which would be good candidates for future genome projects and comparative studies.