[
Cell,
2014]
Surface receptors can link binding of ligands to changes in the actin-based cell cytoskeleton. Chia etal. and Chen etal. provide evidence for direct binding between the cytoplasmic tails ofreceptorsand the WAVE complex, a regulator of the actin nucleator Arp2/3 complex, which mighthelp to explain how environmental signals are translated into changes in morphology andmotility.
[
Nature,
1999]
Advances in human genetics have meant that the genes mutated in human diseases can be identified exclusively by their location in the genome. But how do we work out the cellular functions of the associated protein products? Reports on pages 383 and 386 of this issue begin to address this problem for two proteins - polycystin-1 (PKD1) and polycystin-2 (PKD2) - that are defective in human kidney disease. From their studies of the nematode worm Caenorhabditis elegans, Barr and Sternberg present evidence that homologues of the polycystins act together in a signal-transduction pathway in sensory neurons. Chen et al., by contrast, have used an oocyte-expression system in the from Xenopus laevis to show that a homologue of PKD2 is associated with the activity of a cation channel. These results support the hypothesis that polycystin-related proteins belong to a hitherto unknown class of signal-transduction molecules.
[
Worm,
2016]
The hypoxic response is a well-studied and highly conserved biological response to low oxygen availability. First described more than 20 y ago, the traditional model for this response is that declining oxygen levels lead to stabilization of hypoxia-inducible transcription factors (HIFs), which then bind to hypoxia responsive elements (HREs) in target genes to mediate the transcriptional changes collectively known as the hypoxic response.(1,2) Recent work in C. elegans has forced a re-evaluation of this model by indicating that the worm HIF (HIF-1) can mediate effects in a cell non-autonomous fashion and, in at least one case, increase expression of an intestinal hypoxic response target gene in cells lacking HIF-1.