-
[
Cell,
2001]
The microtubule organizing center, or centrosome, is an unusual organelle. Unlike most organelles, it is not bounded by a membrane, yet it is distinct from the surrounding cytoplasm. It is at the center of important processes in animal and fungal cells, yet many plant cells completely lack it. And perhaps most perplexingly, the centrosome duplicates precisely once per cell cycle, yet the molecular mechanism of duplication remains obscure.
-
[
Research Resources Reporter (DHHS),
1986]
A comprehensive collection of the nematode Caenorhabditis elegans, including strains useful in research and in teaching genetics, is maintained at the Caenorhabditis Genetics Center at the University of Missouri in Columbia, Missouri.
-
[
Mol Cell,
2005]
An Aurora A regulatory module has been identified in two different proteins: TPX2 in Xenopus laevis and TPXL-1 in C. elegans. The diverse roles of these two proteins in spindle assembly leave us to beckon the true C. elegans TPX2 ortholog to center stage.
-
[
Trends in Glycoscience and Glycotechnology,
1999]
A nematode Caenorhabditis elegans has been used as a model organism for the study of animal development and neurons. Recently, essentially complete DNA sequence of the genome was determined and published [Science (1998), 282, 2011-2045]. C. elegans has become of interest in studying the genes whose biological functions are unknown to biologists who are not studying C. elegans, because not only classic genetics but also reverse genetics such as gene knockout can be used in C. elegans. In this manuscript I will briefly explain the methods of searching for the C. elegans homologue of your interested genes using the Internet. How to use DDBJ has already been described [TIGG (1999), 11, 119-127]. Here I write about the homepages of Washington University Genome Sequencing Center, The Sanger Center and ACeDB.
-
[
Bioessays,
2017]
Tissues are shaped and patterned by mechanical and chemical processes. A key mechanical process is the positioning of the mitotic spindle, which determines the size and location of the daughter cells within the tissue. Recent force and position-fluctuation measurements indicate that pushing forces, mediated by the polymerization of astral microtubules against- the cell cortex, maintain the mitotic spindle at the cell center in Caenorhabditis elegans embryos. The magnitude of the centering forces suggests that the physical limit on the accuracy and precision of this centering mechanism is determined by the number of pushing microtubules rather than by thermally driven fluctuations. In cells that divide asymmetrically, anti-centering, pulling forces generated by cortically located dyneins, in conjunction with microtubule depolymerization, oppose the pushing forces to drive spindle displacements away from the center. Thus, a balance of centering pushing forces and anti-centering pulling forces localize the mitotic spindles within dividing C. elegans cells.
-
[
Int J Obes (Lond),
2012]
Caenorhabditis elegans (C. elegans) is a small nematode that conserves 65% of the genes associated with human disease, has a 21-day lifespan, reproductive cycles of 3 days, large brood sizes, lives in an agar dish and does not require committee approvals for experimentation. Research using C. elegans is encouraged and a Caenorhabditis Genetics Center (CGC, Minnesota) is funded by the National Institutes of Health-National Center for Research Resources. Many genetically manipulated strains of C. elegans are available at nominal cost from the CGC. Studies using the C. elegans model have explored insulin signaling, response to dietary glucose, the influence of serotonin on obesity, satiety, feeding and hypoxia-associated illnesses. C. elegans has also been used as a model to evaluate potential obesity therapeutics, explore the mechanisms behind single gene mutations related to obesity and to define the mechanistic details of fat metabolism. Obesity now affects a third of the US population and is becoming a progressively more expensive public health problem. Faster and less expensive methods to reach more effective treatments are clearly needed. We present this review hoping to stimulate interest in using the C. elegans model as a vehicle to advance the understanding and future treatment of obesity.
-
[
PLoS Negl Trop Dis,
2011]
Filarial worms cause a variety of tropical diseases in humans; however, they are difficult to study because they have complex life cycles that require arthropod intermediate hosts and mammalian definitive hosts. Research efforts in industrialized countries are further complicated by the fact that some filarial nematodes that cause disease in humans are restricted in host specificity to humans alone. This potentially makes the commitment to research difficult, expensive, and restrictive. Over 40 years ago, the United States National Institutes of Health-National Institute of Allergy and Infectious Diseases (NIH-NIAID) established a resource from which investigators could obtain various filarial parasite species and life cycle stages without having to expend the effort and funds necessary to maintain the entire life cycles in their own laboratories. This centralized resource (The Filariasis Research Reagent Resource Center, or FR3) translated into cost savings to both NIH-NIAID and to principal investigators by freeing up personnel costs on grants and allowing investigators to divert more funds to targeted research goals. Many investigators, especially those new to the field of tropical medicine, are unaware of the scope of materials and support provided by the FR3. This review is intended to provide a short history of the contract, brief descriptions of the fiilarial species and molecular resources provided, and an estimate of the impact the resource has had on the research community, and describes some new additions and potential benefits the resource center might have for the ever-changing research interests of investigators.
-
[
WormBook,
2006]
The completion of the C. elegans genome sequence permits the comprehensive examination of the expression and function of genes. Annotation of virtually every encoded gene in the genome allows systematic analysis of those genes using high-throughput assays, such as microarrays and RNAi. This chapter will center on the use of microarrays to comprehensively identify genes with enriched expression in the germ line during development. This knowledge provides a database for further studies that focus on gene function during germline development or early embryogenesis. Additionally, a comprehensive overview of germline gene expression can uncover striking biases in how genes expressed in the germ line are distributed in the genome, leading to new discoveries of global regulatory mechanisms in the germ line.
-
[
Front Biosci,
2008]
In the free-living nematode Caenorhabditis elegans, cilia are found on the dendritic endings of sensory neurons. C. elegans cilia are classified as ''primary'' or ''sensory'' according to the ''9+0'' axonemal ultrastructure (nine doublet outer microtubules with no central microtubule pair) and lack of motility, characteristics of ''9+2'' cilia. The C. elegans ciliated nervous system allows the animal to perceive environmental stimuli and make appropriate developmental, physiological, and behavioral decisions. In vertebrates, the biological significance of primary cilia had been largely neglected. Recent findings have placed primary/sensory cilia in the center of cellular signaling and developmental processes. Studies using genetic model organisms such as C. elegans identified the link between ciliary dysfunction and human ciliopathies. Future studies in the worm will address important basic questions regarding ciliary development, morphogenesis, specialization, and signaling functions.
-
[
Cell Cycle,
2005]
The pathway of apoptosis is conserved in the three model species: mammals, Drosophila, and C. elegans. The apoptotic protease-activating factor 1, an essential protein conserved in all three species, is responsible for the activation of the initiator caspase-9in mammalian cells. The structure of the auto-inhibited form of Apaf-1 reveals a critical role for ADP, which serves as an organizing center for four adjoining domains. The ADP-binding pocket contains features that are important for designing other nucleotide analogs. ATP binding is a prerequisite for the formation of the apoptosome. Despite strong sequence conservation between Apaf-1 and its orthologues in Drosophila and C. elegans, it is unclear whether they employ similar mechanisms for their own activation and for activating caspases. Much of the underlying mechanisms remain to be investigated by structural biology and biochemistry.