-
[
WormBook,
2005]
Genetic suppression has provided a very powerful tool for analyzing C. elegans. Suppression experiments are facilitated by the ability to handle very large numbers of individuals and to apply powerful selections. Because the animal grows as a self-fertilizing diploid, both dominant and recessive suppressors can be recovered. Many different kinds of suppression have been reported. These are discussed by category, with examples, together with discussion of how suppressors can be used to interpret the underlying biology, and to enable further experimentation. Suppression phenomena can be divided into intragenic and extragenic classes, depending on whether the suppressor lies in the same gene as the starting mutation, or in a different gene. Intragenic types include same-site replacement, compensatory mutation, alteration in splicing, and reversion of dominant mutations by cis- knockout. Extragenic suppression can occur by a variety of informational mechanisms, such as alterations in splicing, translation or nonsense-mediated decay. In addition, extragenic suppression can occur by bypass, dosage effects, product interaction, or removal of toxic products. Within signaling pathways, suppression can occur by modulating the strength of signal transmission, or by epistatic interactions that can reveal the underlying regulatory hierarchies. In C. elegans biology, the processes of muscle development, vulva formation and sex determination have provided remarkably rich arenas for the investigation and exploitation of suppression.
-
[
Modern Cell Biology,
1994]
During the development of any multicellular organism, the behavior of any given cell can be influenced in two ways: by its ancestry, i.e., by the particular pattern of determinants it inherits (lineal programming); or by its environment, i.e., the signals it receives from other cells. In C. elegans, the relative importance of these two factors for the development of any given cell can be examined with an unusually high degree of precision. There are a number of reasons for this, but perhaps the most important is that the cell lineage, the particular pattern of cell divisions and differentiations that occur in development, is known, and is largely the same from animal to animal. Alterations in the lineage, therefore, can be understood in terms of altered developmental decisions of
-
The world of modern biology is unified by genetics. Genetic approaches have the ability to transcend species and provide cross-links between fields for several reasons. First, is the fact that all species are evolutionarily related. Thus, distinct species have similar gene function, and DNA sequence homology can be found between even distantly related species. Indeed, DNA sequence homology is used as a metric device to determine evolutionary relationships among species. Second, molecular genetic manipulation changes both the genotype and phenotype of an organism. Such manipulations represent an extremely fine-scale tool for dissection of the underlying biochemistry, physiology, anatomy, and development of an individual species. Because virtually any gene can be manipulated at will in many species, a dedicated approach can lead to an unraveling of the relationship between genotype and phenotype for almost any gene in these species.....
-
[
1985]
Studies of aging in nematodes are based largely on the hope that there are some general mechanisms of aging which can be expeditiously revealed in simple multicellular organisms. Although differing greatly from mammals in size, body plan, and some organ systems, nematodes nontheless strongly resemble other metazoans at the cellular, subcellular, and biochemical levels. Moreover, nematodes do exhibit some rather widespread aging phenomena, such as nutritional prolongation of life span, accumulation of age pigments, and enzyme alterations, and their short life span, cellular simplicity, and genetic manipulability can be real advantages in studying the mechanisms underlying these phenomena.
-
[
Methods Cell Biol,
1995]
Both the localization and distribution of nucleic acid sequences in genomes and in cells can be visualized by hybridization of labeled probe DNAs to cytological preparations of chromosomes or tissues. With the introduction of nonisotopically labeled nucleotides that could be incorporated into cloned DNAs by enzymatic methods in vitro, it became possible to detect the site of hybridization quickly using antibodies that recognized the modifying group on the nucleotides incorporated into the probe DNA. More recently, nucleotides labeled with a fluorescent molecule have been incorporated into probes by invitro enzymatic reactions and the site of hybridization can then be visualized directly. As fluorescence in situ hybridization provides a rapid and high-resolution method for mapping genes, it is being sued increasingly for mapping cloned DNAs to chromosomes and for the ordering of clones in large-scale genome projects. On the other hand, physically mapped clones can also be used to label chromosomes for analysis of such biological processes as chromosome segregation, pairing in meiosis, and interphase nuclear order. Nonisotopic methods of hybridization are also ideally suited to visualization of mRNA distributions in tissues, because the signal can be detected in thick specimens, in contrast to isotopic methods that require thin specimens for detection by autoradiography...
-
[
WormBook,
2007]
Great inroads into the understanding of aging have been made using C. elegans as a model system. Several genes have been identified that, when mutated, can extend lifespan. Yet, much about aging remains a mystery, and new technologies that allow the simultaneous assay of expression levels of thousands of genes have been applied to the question of how and why aging might occur. With correct experimental design and statistical analysis, differential gene expression between two or more populations can be obtained with high confidence. The ability to survey the entire genome in an unbiased way is a great asset for the study of complex biological phenomena such as aging. Aging undoubtedly involves changes in multiple genes involved in multiple processes, some of which may not yet be known. Gene expression profiling of wild type aging, and of strains with increased life spans, has provided some insight into potential mechanisms, and more can be expected in the future.
-
[
Methods Cell Biol,
1995]
The number of easily distinguishable mutant phenotypes in Caenorhabditis elegans is relatively small, and this constrains the number of factors that can be followed in standard genetic crosses. Consequently, a new mutation is mapped, first to a chromosome using two-factor data from one or more crosses, and then to a chromosomal subregion by successive three-factor crosses. Mapping would be more efficient if it were possible to score a large number of well-distributed markers in a single cross. The advent of the polymerase chain reaction makes this approach feasible by allowing polymorphic genomic regions to serve as genetic markers that are easily scored in DNA released from individual animals. The only "phenotype" is a band on a gel, so the segregation of many of these markers can be followed in a single cross. Following the terminology proposed by Olsen et al. (1989), we refer to polymorphisms that can be scored by appropriately designed polymerase chain reaction (PCR) assays as polymorphic seqeunce-tagged sites (STSs)...
-
[
2008]
Germline stem cells (GSCs) can generate haploid gametes, sperms or oocyte, which are responsible for transmitting genetic information from generation to generation. Because GSCs can be easily identified and gene functions can be readily manipulated in Drosophila and C. elegans, their niches were among the first to be functionally and anatomically defined. Genetic and cell biological studies in these systems have first shown that stem cell function is controlled by extracellular cues from the niche, and intrinsic genetic programs within the stem cells. Important progress has also recently been made in localizing GSCs in the mouse testis. Here I will review recent progress and compare the differences and commonalities of GSC niches from different systems. Since the studies on GSC niches in Drosophila and C. elegans have provided guiding principles for initial identification of niches in other systems, I hope that this review will provide some stimulating thoughts about niche structures and functions of adult stem cells in somatic systems.
-
[
Methods Mol Biol,
2012]
Cellular effects of primary mitochondrial dysfunction, as well as potential mitochondrial disease therapies, can be modeled in living animals such as the microscopic nematode, Caenorhabditis elegans. In particular, molecular analyses can provide substantial insight into the mechanism by which genetic and/or pharmacologic manipulations alter mitochondrial function. The relative expression of individual genes across both nuclear and mitochondrial genomes, as well as relative quantitation of mitochondrial DNA content, can be readily performed by quantitative real-time PCR (qRT-PCR) analysis of C. elegans. Additionally, microarray expression profiling offers a powerful tool by which to survey the global genetic consequences of various causes of primary mitochondrial dysfunction and potential therapeutic interventions at both the single gene and integrated pathway level. Here, we describe detailed protocols for RNA and DNA isolation from whole animal populations in C. elegans, qRT-PCR analysis of both nuclear and mitochondrial genes, and global nuclear genome expression profiling using the Affymetrix GeneChip C. elegans Genome Array.
-
[
1996]
In the nematode model organism Caenorhabditis elegans developmental processes can be anaylzed at various levels. The invariance of cell lineage allows a high-resolution morphological description of development and an experimental approach by ablation of individual cells. Isolation and characterization of genetic mutations reveal the basis of the genetic program underlying particular developmental processes. DNA-mediated transformation can be used to anaylze the function of cloned genes and thus finally generate also a molecular understanding of the process under investigation. Evolutionary approaches to development are rare and so far consist only of a subset of techniques used in the reference model system. By using the complete set of techniques from the model organism, including genetics, in related but morphologically distinct species, one can get a detailed comparison of a developmental process. Here we describe our attempt to establish the techniques known in the model organism Caenorhabditis of the Rhabditidae in other free-living nematodes, including Pristionchus pacificus of the