-
[
Nature,
1996]
Springtime finds hopeful anglers baiting hungry fish with twitching worms, both live and artificial. Fish prefer the large annelids, but Kemp and coworkers have knotted on their lines the small, alluring nematode Caenorhabditis elegans, which twitches spasmodically when the aptly named protein twitchin goes missing from its muscle cells. And they've caught a big one! On page 636 of this issue, these authors report that the giant protein kinase twitchin, which has a relative molecular mass of 750K and is found in nematode muscle cells, and the protein S100A1(2), a member of the S100 family of calcium-binding proteins, make up a third new calcium-regulated system in muscle which may be of great importance in organizing muscle structure and maintaining its resting tension. They show that a fragment of twitchin containing the autoinhibited kinase domain is specifically activated in a calcium-dependent and zinc-enhanced manner by S100A1(2), but not by the S100B(2) isoform with which it shares 60 percent homology....
-
[
Nat Cell Biol,
2011]
Aurora A kinase is a key regulator of cell division, whose functions were attributed to its ability to phosphorylate diverse substrates. Aurora A is now shown to have a kinase-independent role in the regulation of chromatin-mediated microtubule assembly.
-
[
Nature,
1998]
Some species of the nematode worm (Caenorhabditis elegans) are sociable diners, clumping together to share a meal, yet others are more solitary. Why? According to a report by de Bono and Bargmann, these differences can be explained by a change of just one amino acid in a putative neuropeptide receptor.
-
[
Nat Neurosci,
2003]
In C. elegans, social and solitary feeding behavior can be determined by a single amino acid change in a G protein-coupled receptor. A new study identifies ligands for this receptor and suggests how changes in behavior evolve at the molecular level.
-
[
Nat Cell Biol,
2010]
Recognition of apoptotic cells by phagocytic cells in Caenorhabditis elegans has been something of a mystery. A secreted transthyretin-like protein, TTR-52, has been identified as a bridging molecule between apoptotic cells and CED-1 on the phagocytic cells that engulf them.
-
[
Nature,
1992]
Induction is the process in development in which the fate of one cell mass is determined by another. A simple example occurs during vulval development in the nematode Caenorhabditis elegans: a gonadal cell called the anchor cell induces three neighbouring cells to embark on a programme of cell division and morphogenesis, which culminates, in a few hours, in the formation of a vulva. On page 470 of this issue, Hill and Sternberg report strong evidence that they have identified the anchor-cell signalling molecule, which they find is a member of the EGF (epidermal growth factor) group of growth factors.
-
[
Nature,
2003]
Understanding how we grow old is a long-sought goal. A new large-scale study of gene expression in worms allows us to glimpse the complex biochemistry of lifespan.
-
[
New York Times,
1992]
The simple act of making sperm substantially shortens a male worm's life span, a researcher has discovered in results that overturn accepted biological dogma about the relative cheapness of a male's ejaculation compared with the preciousness of a female's egg. The scientist studying simple but revealing worms called nematodes found that males live much shorter lives than their mates, and he has traced that discrepancy to sperm production.
-
[
Nat Neurosci,
2000]
A recent Nature paper on mice lacking the Na+ channel BNC1 shows that this channel is essential for neuronal touch receptor function and may be part of a mechanosensory complex.
-
[
Science,
1997]
A gene that helps control the life-span of the nematode C. elegans encodes the worm version of the insulin receptor, thereby providing a possible link between aging and glucose metabolism.