-
[
Genetics,
2008]
Natural selection and neutral processes such as demography, mutation, and gene conversion all contribute to patterns of polymorphism within genomes. Identifying the relative importance of these varied components in evolution provides the principal challenge for population genetics. To address this issue in the nematode Caenorhabditis remanei, I sampled nucleotide polymorphism at 40 loci across the X chromosome. The site-frequency spectrum for these loci provides no evidence for population size change, and one locus presents a candidate for linkage to a target of balancing selection. Selection for codon usage bias leads to the non-neutrality of synonymous sites, and despite its weak magnitude of effect (N(e)s approximately 0.1), is responsible for profound patterns of diversity and divergence in the C. remanei genome. Although gene conversion is evident for many loci, biased gene conversion is not identified as a significant evolutionary process in this sample. No consistent association is observed between synonymous-site diversity and linkage-disequilibrium-based estimators of the population recombination parameter, despite theoretical predictions about background selection or widespread genetic hitchhiking, but genetic map-based estimates of recombination are needed to rigorously test for a diversity-recombination relationship. Coalescent simulations also illustrate how a spurious correlation between diversity and linkage-disequilibrium-based estimators of recombination can occur, due in part to the presence of unbiased gene conversion. These results illustrate the influence that subtle natural selection can exert on polymorphism and divergence, in the form of codon usage bias, and demonstrate the potential of C. remanei for detecting natural selection from genomic scans of polymorphism.
-
[
Genetics,
2012]
Mating system transitions dramatically alter the evolutionary trajectories of genomes that can be revealed by contrasts of species with disparate modes of reproduction. For such transitions in Caenorhabditis nematodes, some major causes of genome variation in selfing species have been discerned. And yet, we have only limited understanding of species-wide population genetic processes for their outcrossing relatives, which represent the reproductive state of the progenitors of selfing species. Multilocus-multipopulation sequence polymorphism data provide a powerful means to uncover the historical demography and evolutionary processes that shape genomes. Here we survey nucleotide polymorphism across the X chromosome for three populations of the outcrossing nematode Caenorhabditis remanei and demonstrate its divergence from a fourth population describing a closely related new species from China, C. sp. 23. We find high genetic variation globally and within each local population sample. Despite geographic barriers and moderate genetic differentiation between Europe and North America, considerable gene flow connects C. remanei populations. We discovered C. sp. 23 while investigating C. remanei, observing strong genetic differentiation characteristic of reproductive isolation that was confirmed by substantial F2 hybrid breakdown in interspecific crosses. That C. sp. 23 represents a distinct biological species provides a cautionary example of how standard practice can fail for mating tests of species identity in this group. This species pair permits full application of divergence population genetic methods to obligately outcrossing species of Caenorhabditis and also presents a new focus for interrogation of the genetics and evolution of speciation with the Caenorhabditis model system.
-
[
J Nematol,
2008]
Species of the Caenorhabditis genus have been used as model systems in genetics and molecular research for more than 30 years. Despite this, basic information about their demography, in the wild and in the lab, has remained unknown until very recently. Here, we provide for the first time a closely quantified life-cycle of the gonochoristic nematode C. remanei. Using C. elegans protocols, modified for an outcrossing nematode, we estimated the basic demography for individuals of two strains (JU724 and MY12-G) which were recently isolated from the wild. We used a half-sib breeding design to estimate the phenotypic variance of traits of related (within line) and unrelated individuals (between lines) of the two strains cultured in a common environment in the lab. Comparisons between these strains showed that JU724 was characterized by significantly lower overall lifetime fecundity and by differences in age-specific fecundity relative to MY12-G, but there were no differences in their life expectancy and reproductive lifespan. We found high phenotypic variance among all traits. The variance within lines was relatively high compared to the low variation between lines. We suggest this could be the result of high gene flow in these wild-type strains. Finally, comparisons between species suggest that, despite the differences in reproductive strategies (i.e., sex ratios, lifetime fecundity), C. remanei has developmental time similar to the hermaphroditic N2 strain of C. elegans.
-
[
Nematology,
1999]
Caenorhabditis remanei was found in association with the terrestrial isopod Trachelipus rathkii at several wooded locations in southwestern Ohio. These associations were as developmentally arrested dauer larvae. The sites of association were the inner surfaces of the dorsal plates and ventral appendages. C. remanei associations also were observed with Armadillidium nasatum, Cylisticus convexus, and Porcellio scaber. They were not observed with Porcellio spinicornis even though Fl spinicornis populations were intermingled with infested populations of T. rathkii. Consistent with the observed natural associations, C. remanei dauers were experimentally able to infest T. rathkii and P. scaber. Dauer larvae responded to confinement with isopods by nictating and by climbing upon these potential hosts. Experimental infestations were able to persist for at least five days. Long-term infestations were not attempted.
-
[
Dev Genes Evol,
2006]
Studies of sterile mutants in Caenorhabditis elegans have uncovered new insights into fundamental aspects of gamete cell biology, development, and function at fertilization. The genome sequences of C. elegans, Caenorhabditis briggsae and Caenorhabditis remanei allow for informative comparative studies among these three species. Towards that end, we have examined wild-type sperm morphology and activation (spermiogenesis) in each. Light and electron microscopy studies reveal that general sperm morphology, organization, and ultrastructure are similar in all three species, and activation techniques developed for C. elegans were found to work well in both C. briggsae and C. remanei. Despite important differences in the reproductive mode between C. remanei and the other two species, most genes required for spermiogenesis are conserved in all three. Finally, we have also examined the subcellular distribution of sperm epitopes in C. briggsae and C. remanei that cross-react with anti-sera directed against C. elegans sperm proteins. The baseline data in this study will prove useful for the future analysis and interpretation of sperm gene function across nematode species.
-
[
PLoS One,
2013]
Genetic approaches (e.g. mutation, RNA interference) in model organisms, particularly the nematode Caenorhabditis elegans, have yielded a wealth of information on cellular processes that can influence lifespan. Although longevity mutants discovered in the lab are instructive of cellular physiology, lab studies might miss important genes that influence health and longevity in the wild. C. elegans has relatively low natural genetic variation and high levels of linkage disequilibrium, and thus is not optimal for studying natural variation in longevity. In contrast, its close relative C. remanei possesses very high levels of molecular genetic variation and low levels of linkage disequilibrium. To determine whether C. remanei may be a good model system for the study of natural genetic variation in aging, we evaluated levels of quantitative genetic variation for longevity and resistance to oxidative, heat and UV stress. Heritability (and the coefficient of additive genetic variation) was high for oxidative and heat stress resistance, low (but significant) for longevity, and essentially zero for UV stress response. Our results suggest that C. remanei may be a powerful system for studying natural genetic variation for longevity and oxidative and heat stress response, as well as an informative model for the study of functional relationships between longevity and stress response.
-
[
Dev Dyn,
2005]
The Caenorhabditis elegans
pos-1 gene encodes a zinc-finger protein that is required for germline specification during embryogenesis. The maternally provided mRNA is translationally regulated both spatially and temporally during early development. We have cloned orthologs of
pos-1 from C. briggsae and C. remanei, two Caenorhabditis species that have diverged from C. elegans by approximately 20-40 million years. Two regions in the 3' untranslated region are highly conserved among all three species. We find that the
pos-1 RNA is expressed in the hermaphrodite and female gonads of C. briggsae and C. remanei but POS-1 protein is not detected at high levels in C. briggsae until the 2-cell stage of embryogenesis. The protein expression is restricted to the germline precursors of the embryo. We conclude that
pos-1 appears to be translationally regulated in C. briggsae as it is in C. elegans and speculate the conserved 3' UTR sequences may be involved.
-
[
Genetics,
2006]
The common ancestor of the self-fertilizing nematodes Caenorhabditis elegans and C. briggsae must have reproduced by obligate outcrossing, like most species in this genus. However, we have only a limited understanding about how genetic variation is patterned in such male-female (gonochoristic) Caenorhabditis species. Here, we report results from surveying nucleotide variation of six nuclear loci in a broad geographic sample of wild isolates of the gonochoristic C. remanei. We find high levels of diversity in this species, with silent-site diversity averaging 4.7%, implying an effective population size close to one million. Additionally, the pattern of polymorphisms reveals little evidence for population structure or deviation from neutral expectations, suggesting that the sampled C. remanei populations approximate panmixis and demographic equilibrium. Combined with the observation that linkage disequilibrium between pairs of polymorphic sites decays rapidly with distance, this suggests that C. remanei will provide an excellent system for identifying the genetic targets of natural selection from deviant patterns of polymorphism and linkage disequilibrium. The patterns revealed in this obligately outcrossing species may provide a useful model of the evolutionary circumstances in C. elegans'' gonochoristic progenitor. This will be especially important if self-fertilization evolved recently in C. elegans history, because most of the evolutionary time separating C. elegans from its known relatives would have occurred in a state of obligate outcrossing.
-
[
G3 (Bethesda),
2014]
Many organisms can acclimate to new environments through phenotypic plasticity, a complex trait that can be heritable, subject to selection, and evolve. However, the rate and genetic basis of plasticity evolution remain largely unknown. We experimentally evolved outbred populations of the nematode Caenorhabditis remanei under an acute heat shock during early larval development. When raised in a nonstressful environment, ancestral populations were highly sensitive to a 36.8 heat shock and exhibited high mortality. However, initial exposure to a nonlethal high temperature environment resulted in significantly reduced mortality during heat shock (hormesis). Lines selected for heat shock resistance rapidly evolved the capacity to withstand heat shock in the native environment without any initial exposure to high temperatures, and early exposure to high temperatures did not lead to further increases in heat resistance. This loss of plasticity would appear to have resulted from the genetic assimilation of the heat induction response in the noninducing environment. However, analyses of transcriptional variation via RNA-sequencing from the selected populations revealed no global changes in gene regulation correlated with the observed changes in heat stress resistance. Instead, assays of the phenotypic response across a broader range of temperatures revealed that the induced plasticity was not fixed across environments, but rather the threshold for the response was shifted to higher temperatures over evolutionary time. These results demonstrate that apparent genetic assimilation can result from shifting thresholds of induction across environments and that analysis of the broader environmental context is critically important for understanding the evolution of phenotypic plasticity.
-
[
Curr Biol,
2006]
Adaptive codon usage provides evidence of natural selection in one of its most subtle forms: a fitness benefit of one synonymous codon relative to another. Codon usage bias is evident in the coding sequences of a broad array of taxa, reflecting selection for translational efficiency and/or accuracy as well as mutational biases. Here, we quantify the magnitude of selection acting on alternative codons in genes of the nematode Caenorhabditis remanei, an outcrossing relative of the model organism C. elegans, by fitting the expected mutation-selection-drift equilibrium frequency distribution of preferred and unpreferred codon variants to the empirical distribution. This method estimates the intensity of selection on synonymous codons in genes with high codon bias as N(e)s = 0.17, a value significantly greater than zero. In addition, we demonstrate for the first time that estimates of ongoing selection on codon usage among genes, inferred from nucleotide polymorphism data, correlate strongly with long-term patterns of codon usage bias, as measured by the frequency of optimal codons in a gene. From the pattern of polymorphisms in introns, we also infer that these findings do not result from the operation of biased gene conversion toward G or C nucleotides. We therefore conclude that coincident patterns of current and ancient selection are responsible for shaping biased codon usage in the C. remanei genome.