-
[
Nature,
2002]
A humble nematode has wormed its way into the affection of the scientific community and helped to secure this year's Nobel Prize in Physiology or Medicine. The award goes to three biologists whose work on the model organism Caenorhabditis elegans has yielded insights and spin-offs in such diverse fields as cancer research and modern
-
[
Genetics,
1996]
I fell in love with Caenorhabditis elegans in the summer of '72. Our relationship was cemented four years later, 20 years ago now, by the publication of a paper in Genetics on C. elegans chromosome rearrangements (Herman et al. 1976). My pleasant assignment here is to describe the beginning of that work and to relate it to current worm cytogenetics and chromosome mechanics.
-
[
Science,
2002]
The nematode worm known as Caenorhabditis elegans is not much to look at. Just a millimeter long and transparent to boot, it is almost invisible to the naked eye. But in biological research the tiny worm looms large, providing a model system for studying everything from embryonic development to aging. Now, three researchers who pioneered the use of C. elegans as a model organism have won the Nobel Prize in Physiology or Medicine.
-
[
Development,
2024]
Germ granules have been hypothesized to deliver mRNAs of germ cell fate determinants to primordial germ cells. Now, a new study in Development finds that many mRNAs enriched in germ granules are not involved in germline development in Caenorhabditis elegans. To find out more about the story behind the paper, we caught up with first author Alyshia Scholl, second author Yihong Liu and corresponding author Geraldine Seydoux, Professor at Johns Hopkins University School of Medicine.
-
[
Nat Rev Genet,
2001]
The nematode Caenorhabditis elegans is well known to practising biologists as a model organism. Early work with C. elegans is best understood as part of a descriptive tradition in biological practice. Although the resources that have been generated by the C. elegans community have been revolutionary, they were produced by traditional methods and approaches. Here, I review the choice and use of the worm as an experimental organism for genetics and neurobiology that began in the 1960s.
-
[
Development,
2024]
Male pheromones accelerate the development of hermaphrodite larvae in Caenorhabditis elegans, but the importance of this phenomenon is not well understood. A new paper in Development shows that pheromone exposure during larval stage 3 helps coordinate behaviour and development by modulating the timing of the transition to larval stage 4. To learn more about the story behind the paper, we caught up with first author Denis Faerberg who carried out the work in the lab of the corresponding author Ilya Ruvinsky at Northwestern University, USA.
-
[
Genetics,
2002]
This article marks the 25th anniversary of a paper reporting the first sex-determination mutants to be found in the nematode Caenorhabditis elegans. The isolation of these mutants initiated an extensive analysis of nematode sex determination and dosage compensation, carried out by a number of laboratories over the subsequent decades. As a result, the process of sex determination is now one of the most thoroughly understood parts of C. elegans development, in both genetic and molecular terms. It has also proved to have interesting repercussions on the study of sex determination in other organisms.
-
[
Genetics,
2019]
The Genetics Society of America's (GSA) Thomas Hunt Morgan Medal honors researchers for lifetime achievement in genetics. The recipient of the 2018 Morgan Medal, Barbara J. Meyer of the Howard Hughes Medical Institute and the University of California, Berkeley, is recognized for her career-long, groundbreaking investigations of how chromosome behaviors are controlled. Meyer's work has revealed mechanisms of sex determination and dosage compensation in <i>Caenorhabditis elegans</i> that continue to serve as the foundation of diverse areas of study on chromosome structure and function today, nearly 40 years after she began her work on the topic.
-
[
Genetics,
2015]
Ellsworth Dougherty (1921-1965) was a man of impressive intellectual dimensions and interests; in a relatively short career he contributed enormously as researcher and scholar to the biological knowledge base for selection of Caenorhabditis elegans as a model organism in neurobiology, genetics, and molecular biology. He helped guide the choice of strains that were eventually used, and, in particular, he developed the methodology and understanding for the nutrition and axenic culture of nematodes and other organisms. Dougherty insisted upon a concise terminology for culture techniques and coined descriptive neologisms that were justified by their linguistic roots. Among other contributions, he refined the classification system for the Protista.
-
[
Development,
2025]
Dominique Bergmann completed her PhD at the University of Colorado, Boulder, USA, studying left-right asymmetry in the nematode Caenorhabditis elegans. Her interest in cell geometry and organisation led her into the field of plant development, and she carried out postdoctoral research at the Carnegie Institution before establishing her own lab at Stanford University, USA. Dominique is now a Professor of Biology at Stanford and a Howard Hughes Medical Institute Investigator. She has been an Editor at Development since 2023. We caught up with Dominique over Zoom to find out more about her research in the field of stomatal development, her role as an Editor, and how her passion for comparative biology has influenced her career.