-
[
Genetics,
2024]
Reliable methods for detecting and analyzing gene expression are necessary tools for understanding development and investigating biological responses to genetic and environmental perturbation. With its fully sequenced genome, invariant cell lineage, transparent body, wiring diagram, detailed anatomy, and wide array of genetic tools, Caenorhabditis elegans is an exceptionally useful model organism for linking gene expression to cellular phenotypes. The development of new techniques in recent years has greatly expanded our ability to detect gene expression at high resolution. Here, we provide an overview of gene expression methods for C. elegans, including techniques for detecting transcripts and proteins in situ, bulk RNA sequencing of whole worms and specific tissues and cells, single-cell RNA sequencing, and high-throughput proteomics. We discuss important considerations for choosing among these techniques and provide an overview of publicly available online resources for gene expression data.
-
[
WormBook,
2005]
C. elegans has emerged as a powerful genetic model organism in which to study synaptic function. Most synaptic proteins in the C. elegans genome are highly conserved and mutants can be readily generated by forward and reverse genetics. Most C. elegans synaptic protein mutants are viable affording an opportunity to study the functional consequences in vivo. Recent advances in electrophysiological approaches permit functional analysis of mutant synapses in situ. This has contributed to an already powerful arsenal of techniques available to study synaptic function in C. elegans. This review highlights C. elegans mutants affecting specific stages of the synaptic vesicle cycle, with emphasis on studies conducted at the neuromuscular junction.
-
[
WormBook,
2005]
C. elegans presents a low level of molecular diversity, which may be explained by its selfing mode of reproduction. Recent work on the genetic structure of natural populations of C. elegans indeed suggests a low level of outcrossing, and little geographic differentiation because of migration. The level and pattern of molecular diversity among wild isolates of C. elegans are compared with those found after accumulation of spontaneous mutations in the laboratory. The last part of the chapter reviews phenotypic differences among wild isolates of C. elegans.
-
[
WormBook,
2008]
The role of neuropeptides in modulating behavior is slowly being elucidated. With the sequencing of the C. elegans genome, the extent of the neuropeptide genes in C. elegans can be determined. To date, 113 neuropeptide genes encoding over 250 distinct neuropeptides have been identified. Of these, 40 genes encode insulin-like peptides, 31 genes encode FMRFamide-related peptides, and 42 genes encode non-insulin, non-FMRFamide-related neuropeptides. As in other systems, C. elegans neuropeptides are derived from precursor molecules that must be post-translationally processed to yield the active peptides. These precursor molecules contain a single peptide, multiple copies of a single peptide, multiple distinct peptides, or any combination thereof. The neuropeptide genes are expressed extensively throughout the nervous system, including in sensory, motor, and interneurons. In addition, some of the genes are also expressed in non-neuronal tissues, such as the somatic gonad, intestine, and vulval hypodermis. To address the effects of neuropeptides on C. elegans behavior, animals in which the different neuropeptide genes are inactivated or overexpressed are being isolated. In a complementary approach the receptors to which the neuropeptides bind are also being identified and examined. Among the knockout animals analyzed thus far, defects in locomotion, dauer formation, egg laying, ethanol response, and social behavior have been reported. These data suggest that neuropeptides have a modulatory role in many, if not all, behaviors in C. elegans.
-
[
WormBook,
2005]
Nervous systems are characterized by an astounding degree of cellular diversity. The nematode Caenorhabditis elegans has served as a valuable model system to define the genetic programs that serve to generate cellular diversity in the nervous system. This review discusses neuronal diversity in C. elegans and provides an overview of the molecular mechanisms that define and specify neuronal cell types in C. elegans.
-
[
WormBook,
2005]
A wide variety of bacterial pathogens, as well as several fungi, kill C. elegans or produce non-lethal disease symptoms. This allows the nematode to be used as a simple, tractable model host for infectious disease. Human pathogens that affect C. elegans include Gram-negative bacteria of genera Burkholderia, Pseudomonas, Salmonella, Serratia and Yersinia; Gram-positive bacteria Enterococcus, Staphylococcus and Streptococcus; and the fungus Cryptococcus neoformans. Microbes that are not pathogenic to mammals, such as the insect pathogen Bacillus thuringiensis and the nematode-specific Microbacterium nematophilum, are also studied with C. elegans. Many of the pathogens investigated colonize the C. elegans intestine, and pathology is usually quantified as decreased lifespan of the nematode. A few microbes adhere to the nematode cuticle, while others produce toxins that kill C. elegans without a requirement for whole, live pathogen cells to contact the worm. The rapid growth and short generation time of C. elegans permit extensive screens for mutant pathogens with diminished killing, and some of the factors identified in these screens have been shown to play roles in mammalian infections. Genetic screens for toxin-resistant C. elegans mutants have identified host pathways exploited by bacterial toxins.
-
[
WormBook,
2005]
This chapter reviews analytical tools currently in use for protein classification, and gives an overview of the C. elegans proteome. Computational analysis of proteins relies heavily on hidden Markov models of protein families. Proteins can also be classified by predicted secondary or tertiary structures, hydrophobic profiles, compositional biases, or size ranges. Strictly orthologous protein families remain difficult to identify, except by skilled human labor. The InterPro and NCBI KOG classifications encompass 79% of C. elegans protein-coding genes; in both classifications, a small number of protein families account for a disproportionately large number of genes. C. elegans protein-coding genes include at least ~12,000 orthologs of C. briggsae genes, and at least ~4,400 orthologs of non-nematode eukaryotic genes. Some metazoan proteins conserved in other nematodes are absent from C. elegans. Conversely, 9% of C. elegans protein-coding genes are conserved among all metazoa or eukaryotes, yet have no known functions.
-
[
WormBook,
2010]
An understanding of evolution at the molecular level requires the simultaneous consideration of the 5 fundamental evolutionary processes: mutation, recombination, natural selection, genetic drift, and population dynamic effects. Experimental, comparative genomic, and population genetic work in C. elegans has greatly expanded our understanding of these core processes, as well as of C. elegans biology. This chapter presents a brief overview of some of the most salient features of molecular evolution elucidated by the C. elegans system.
-
[
WormBook,
2007]
As in all living organisms, survival in C. elegans requires adequate management of energy supplies. Genetic screens have revealed that C. elegans fat regulation involves a complex network of genes with known or likely functions in food sensation, neuroendocrine signaling, uptake, transport, storage and utilization of fats. Core fat and sugar metabolic pathways are conserved in C. elegans. Flux through these pathways is modulated by cellular energy sensors that operate via transcriptional and translational regulatory mechanisms. In turn, neuroendocrine mechanisms couple sensory and metabolic pathways while neuromodulatory pathways influence both metabolic and food seeking/consumption pathways. The shared ancestry of C. elegans and mammalian fat regulatory pathways extends to developmental programs that underlie fat storage capacity, despite lack of dedicated adipocytes, and genes whose human homologs are implicated in obesity. This suggests that many of the newly identified C. elegans fat regulatory pathways play similar roles in mammals. C. elegans is ideally suited for the integrated study of mechanisms that operate in multiple tissues and elicit feedback responses that affect processes as diverse as metabolism and behavior.
-
[
Genetics,
2023]
The nematode Caenorhabditis elegans is a research model organism particularly suited to the mechanistic understanding of synapse genesis in the nervous system. Armed with powerful genetics, knowledge of complete connectomics, and modern genomics, studies using C. elegans have unveiled multiple key regulators in the formation of a functional synapse. Importantly, many signaling networks display remarkable conservation throughout animals, underscoring the contributions of C. elegans research to advance the understanding of our brain. In this chapter, we will review up-to-date information of the contribution of C. elegans to the understanding of chemical synapses, from structure to molecules and to synaptic remodeling.