-
[
International C. elegans Meeting,
1997]
We have conducted molecular analyses of C. elegans genes that control cytoskeletal organization in the hypodermis. Specifically, our work focuses on
hmp-1,
hmp-2, and
hmr-1 mutants that arrest elongation during embryo morphogenesis. We have cloned these genes and found each one to be homologous to components of vertebrate adherens junctions: a-catenin, b-catenin, and cadherin, respectively. The use of the GFP reporter molecule revealed HMP-1 localization to adherens junctions in the hypodermis, intestines, and pharynx, as well as expression in neuronal cell types. Furthermore, these experiments have shown that the 5' 2.0 Kb genomic fragment is sufficient to localize HMP-1 to adherens junctions. This region, which includes the first 240 amino acids, requires HMP-2 for localization to adherens junctions. We have recently obtained transgenic rescue with genomic fragments for the
hmp-2 and
hmr-1 mutants. We are conducting similar analyses of protein localization and expression patterns on both these genes. Additionally, we are investigating interactions of all these components to determine the mechanisms by which they function in cytoskeletal organization and embryo morphogenesis.
-
[
International C. elegans Meeting,
1999]
The sealing of epithelial sheets via the formation of adherent cell-cell junctions is an important morphogenetic event during animal development, yet little is known about how migratory epithelia modulate their junctional connections. The three dimensional shape of embryonic epithelia makes their analysis difficult, and perturbation of junctional molecules via mutation or RNA interference typically disrupts epithelia prior to sheet sealing. Mutations in the C. elegans cadherin
hmr-1 , a -catenin
hmp-1 , and b -catenin/armadillo
hmp-2 are a valuable exception, as these molecules are not essential for general cell adhesion (M. Costa et al., 1998. J. Cell Biol. 141 , 297-308). We have used time-lapse multiphoton laser scanning microscopy to analyze the mechanisms of migration and sealing of the C. elegans hypodermis during ventral enclosure at the subcellular level. Cell-cell junctions were visualized using two reporters: HMP-1-GFP and JAM-1-GFP (for "junction associated molecule"; JAM-1 is recognized by the MH27 monoclonal antibody). HMP-1-GFP is distributed uniformly throughout filopodia extended by the first ventral hypodermal cells to reach the midline ("leading cells"). By 5 min after their contact at the ventral midline, HMP-1 a -catenin rapidly accumulates at future sites of junction formation between contralateral cells. JAM-1 is inserted at ventral midline junctions 15 min following a -catenin accumulation. Cadherin-mediated adhesive strengthening is specifically required to stabilize initial adhesion events between filopodia; in embryos lacking
hmr-1 or
hmp-1 mRNA, leading cells approach the midline, establish filopodial contact, but do not form stable junctional connections. In addition, in the absence of HMR-1, ectopic and precocious cell-cell fusions occur between hypodermal cells that reach the ventral midline. In contrast, posterior ventral hypodermal cells, which do not display long filopodia, can make correct attachments at the ventral midline in the absence of HMR-1 or HMP-1. Our results indicate that embryonic epithelial cells that use filopodia for migration require recruitment of a -catenin at sites of nascent junction formation to correctly regulate mature junction assembly.
-
[
International Worm Meeting,
2009]
How are polarized epithelia established and maintained? This question is of critical importance, as the loss of epithelial polarity is associated with metastasis(1). There are many well-studied protein complexes that lie in specific membrane compartments with roles integral to the epithelial cell. The E-cadherin-containing adherens junction serves to link neighboring epithelial cells together while the more basal tight junction functions to separate the apical and basolateral surfaces. For some cells, E-cadherin is the major initiator of cell polarity and epithelium formation via cell-cell adhesion(2). However, recent studies have discovered E-cadherin independent polarity pathways(3-6). C. elegans offers a powerful system to study this cadherin-independent mechanism, as E-cadherin is dispensible for the initiation of epithelial polarity in nematodes(4). We study cadherin-independent epithelium formation during pharynx development. Nine pharyngeal arcade cells undergo a mesenchymal-to-epithelial transition to link the pharynx to the outer epidermis(7). Ablation of the arcade cells results in a Pharynx unattached (Pun) phenotype, in which the pharynx fails to connect to the epidermis(7). Pun animals die as they are unable to eat. Our lab has undertaken a genetic screen for Pun mutants that fail to form the arcade cell epithelium (Portereiko and Mango, unpublished). This screen revealed that loss of the central-spindlin component ZEN-4/MKLP1 induces a Pun phenotype because the arcade cells fail to polarize(8). We are currently studying where and when ZEN-4 is needed for arcade cell polarization. We have also undertaken a structure/function analysis of this mitotic kinesin in order to elucidate its role in epithelialization. In addition, we are in the process of cloning several mutants that were isolated in the Pun mutagenesis screen. (1). J. M. Lee, S. Dedhar, R. Kalluri, E. W. Thompson, J Cell Biol 172, 973 (Mar 27, 2006). (2). L. N. Nejsum, W. J. Nelson, J Cell Biol 178, 323 (Jul 16, 2007). (3). A. F. Baas et al., Cell 116, 457 (Feb 6, 2004). (4). M. Costa et al., J Cell Biol 141, 297 (Apr 6, 1998). (5). T. J. Harris, M. Peifer, J Cell Biol 167, 135 (Oct 11, 2004). (6). W. B. Raich, C. Agbunag, J. Hardin, Curr Biol 9, 1139 (Oct 21, 1999). (7). M. F. Portereiko, S. E. Mango, Dev Biol 233, 482 (May 15, 2001). (8). M. F. Portereiko, J. Saam, S. E. Mango, Curr Biol 14, 932 (Jun 8, 2004).
-
[
West Coast Worm Meeting,
2002]
To understand the evolution of developmental mechanisms, we are doing a comparative analysis of vulval patterning in C. elegans and C. briggsae. C. briggsae is closely related to C. elegans and has identical looking vulval morphology. However, recent studies have indicated subtle differences in the underlying mechanisms of development. The recent completion of C. briggsae genome sequence by the C. elegans Sequencing Consortium is extremely valuable in identifying the conserved genes between C. elegans and C. briggsae.
-
[
International Worm Meeting,
2019]
C. inopinata is a newly discovered sibling species of C. elegans. Despite their phylogenetic closeness, they have many differences in morphology and ecology. For example, while C. elegans is hermaphroditic, C. inopinata is gonochoristic; C. inopinata is nearly twice as long as C. elegans. A comparative analysis of C. elegans and C. inopinata enables us to study how genomic changes cause these phenotypic differences. In this study, we focused on early embryogenesis of C. inopinata. First, by the microparticle bombardment method we made a C. inopinata line that express GFP::histone in whole body, and compared the early embryogenesis with C. elegans by DIC and fluorescent live imaging. We found that the position of pronuclei and polar bodies were different between these two species. In C. elegans, the female and male pronuclei first become visible in anterior and posterior sides, respectively, then they meet at the center of embryo. On the other hand, the initial position of pronuclei were more closely located in C. inopinata. Also, the polar bodies usually appear in the anterior side of embryo in C. elegans, but they appeared at random positions in C. inopinata. Therefore, we infer that C. inopinata may have a different polarity formation mechanism from that in C. elegans. We are also analyzing temperature dependency of embryogenesis in C. inopinata, whose optimal temperature is ~7 degree higher than that in C. elegans.
-
[
Development & Evolution Meeting,
2008]
Recently, seven new Caenorhabditis have been discovered, bringing the number of Caenorhabditis species in culture to 17, 10 of which are undescribed. To elucidate the relationships of the new species to the five species with sequenced genomes, we have used sequence data from two rRNA genes and several protein-coding genes for reconstructing the phylogenetic tree of Caenorhabditis. Four new species (spp. 5, 9, 10, 11) group within the so-called Elegans group of Caenorhabditis, with C. elegans being the first branch. Whereas none of them is likely to be the sister species of C. elegans, we now know of two close relatives of C. briggsae-C. sp. 5 and C. sp. 9. C. sp. 9 can hybridize with C. briggsae in the laboratory [see abstract by Woodruff et al.]. Of the remaining new species, C. sp. 7 branches off between C. elegans and C. japonica. This species is easier to cultivate than C. japonica and may be a better candidate for comparative experimental work. Two of the new species branch off before C. japonica as sister species of C. sp. 3 and C. drosophilae+C. sp. 2, respectively. Only one of the new species, C. sp. 11, is hermaphroditic. The position of C. sp. 11 in the phylogeny suggests that hermaphroditism evolved three times within the Elegans group. Two of the new species were isolated from rotting leaves and flowers, and five from rotting fruit. Rotting fruit is also the habitat in which C. elegans has been found to proliferate (Barriere and Felix, Genetics 2007) and from which C. briggsae, C. brenneri and C. remanei were repeatedly isolated. This suggests that the habitat of the stem species of Caenorhabditis after the divergence of the earliest branches (C. plicata, C. sonorae and C. sp. 1) was rotting fruit. The rate of discovery of new Caenorhabditis species has steadily increased since the description of C. elegans in 1899, with a leap in the last two years. There is no indication that we are even close to knowing all species in this genus.
-
[
International Worm Meeting,
2015]
Dosage compensation (DC) across Caenorhabditis species exemplifies an essential process that has undergone rapid co-evolution of protein-DNA interactions central to its mechanism. In C. elegans, recruitment elements on X (rex sites) recruit a condensin-like DC complex (DCC) to hermaphrodite X chromosomes to balance gene expression between the sexes. Recruitment assays in vivo showed that C. elegans rex sites do not recruit the DCC of C. briggsae, and vice versa. To understand how DC complexes and X chromosomes evolved to use different X targeting sequences, we compared DCC subunits and binding sites in C. elegans to those in three species of the C. briggsae clade (15-30 MYR diverged): C. briggsae, its close relative C. nigoni (C. sp. 9), and C. tropicalis (C. sp. 11). By raising antibodies and introducing endogenous tags with TALENs or CRISPR/Cas9, we showed that homologs of both SDC-2, the pivotal X targeting factor, and DPY-27, a DCC-specific condensin subunit, bind X chromosomes of XX animals. Although the DCC shares key components across these four species, the binding sites differ. First, ChIP-seq studies in C. briggsae and C. nigoni identified DCC binding sites that are homologous across these close relatives but differ from C. elegans sites in sequence and location. Second, C. elegans sites use motifs enriched on X (MEX and MEXII) to drive DCC binding, but these motifs are not in C. briggsae or C. nigoni DCC sites and are not X-enriched. Third, we found an X-enriched motif at DCC binding sites of C. briggsae and C. nigoni that is not X-enriched in C. elegans. An oligo with the C. briggsae motif recruits the DCC in C. briggsae, but a similar oligo lacking the motif fails to recruit, establishing the importance of the motif. Fourth, another motif was found in C. briggsae and C. nigoni that shares a few nucleotides with MEX, but its functional divergence was shown by C. elegans recruitment assays. Fifth, two endogenous C. briggsae X-chromosome regions with strong C. elegans MEX motifs fail to recruit the C. briggsae DCC, as assayed by ChIP-seq and recruitment assays. None of these DCC motifs is enriched on the C. tropicalis draft X sequence, supporting further binding site divergence within the C. briggsae clade. Ongoing ChIP-seq studies in C. tropicalis will help determine how C. elegans and C. briggsae clade motifs are evolutionarily related. Comparison of DCC targeting mechanisms across these four species allows us to characterize a rarely captured event: the recent co-evolution of a protein complex and its rapidly diverged target sequences across an entire X chromosome.
-
[
International Worm Meeting,
2009]
Recently, nine new Caenorhabditis have been discovered, bringing the number of Caenorhabditis species in culture to nineteen, eleven of which are undescribed. To elucidate the relationships of the new species to the five species with sequenced genomes, we have used sequence data from two rRNA genes and several protein-coding genes for reconstructing the phylogenetic tree of Caenorhabditis. Four new species (spp. 5, 9, 10 and 11) group within the so-called Elegans group of Caenorhabditis, with C. elegans being the first branch. Although none of them is the sister species of C. elegans, C. sp. 5 and C. sp. 9 are close relatives of C. briggsae. C. sp. 9 can hybridize with C. briggsae in the laboratory. Of the remaining new species, C. sp. 7 branches off between C. elegans and C. japonica. Three of these species, C. sp. 7, C. sp. 9 and C. sp. 11 have been chosen for genome sequencing. Four further new species branch off before C. japonica within a monophyletic clade which also comprises C. sp. 3 and C. drosophilae. Only one of the new species, C. sp. 11, is hermaphroditic. The position of C. sp. 11 in the phylogeny suggests that hermaphroditism evolved three times within the Elegans group. Two of the new species were isolated from rotting leaves and flowers, and seven from rotting fruit. Rotting fruit is also the habitat in which C. elegans has been found to proliferate (Barriere and Felix, Genetics 2007) and from which C. briggsae, C. brenneri and C. remanei were repeatedly isolated. This suggests that the habitat of the stem species of Caenorhabditis after the divergence of the earliest branches (C. plicata, C. sonorae and C. sp. 1) was rotting fruit. Other characters, like the shape of the stoma and the male tail, introns, susceptibility to RNAi and genome size are being evaluated in the context of the phylogeny. The rate of discovery of new Caenorhabditis species has steadily increased since the description of C. elegans in 1899, with a leap in the last few years. There is no indication that we are even close to knowing all species in this genus.
-
[
International Worm Meeting,
2003]
Previous studies have shown that C. elegans ovo-related gene
lin-48 expresses in a small number of cells including the excretory duct cell. In the related species C. briggsae, the expression is conserved in all cells except the excretory duct. This
lin-48 expression difference affects excretory duct morphogenesis. In C. briggsae, as well as in C. elegans
lin-48(
sa496) mutants, the excretory duct is more anterior than in C. elegans wild type. This indicates that C. elegans
lin-48 (
Ce-lin-48) is involved in duct morphogenesis and positioning, but this gene function is absent in C. briggsae (1). We have made reporter transgenes composed of the
lin-48 regulatory sequences from C. elegans or C. briggsae driving expression of green fluorescent protein (GFP). Tests of these clones in each species showed that only the
Ce-lin-48 is expressed in excretory duct cell in C. elegans animal. These results indicate that there are differences in both cis-regulatory sequences and trans-acting proteins between the two species. By creating chimeric reporter transgenes including C. elegans and C. briggsae regulatory sequences, we have found that one difference between the two species is the presence of regulatory sequences in
Ce-lin-48 that respond to the bZip protein CES-2 (1). The
lin-48 gene expression differences between C. elegans and C. briggsae could result from loss of excretory duct expression in the C.briggsae lineage or acquired expression in the C. elegans lineage. To distinguish between these possibilities, we have analyzed three additional Caenorhabditis species (C. remanei, C. sp. CB5161 and C. sp. PS1010). We found these species have a duct morphology similar to C. briggsae indicating the C. elegans morphology is unique to this species. For comparison to C. elegans and C. briggsae, we have isolated the
lin-48 gene from C. remanei and C. sp. CB5161. Alignment of the
lin-48 regulatory sequences reveals that the sequences are more conserved among C. briggsae, C. remanei and C. sp. 5161. Several conserved domains are absent from C. elegans, whereas the previously identified CES-2 binding sites are absent from the other species. Currently, we are creating
lin-48::gfp reporter transgenes for each species to observe the gene expression patterns. Further experiments with these transgenes will allow us to test whether the differences between C. elegans and the other species result from a loss of repressor elements or gain of activator elements in the C. elegans gene. (1)X. Wang and H. M. Chamberlin (2002) Genes & Development 16: 2345-2349.
-
Kanzaki, Natsumi, Hoshi, Yuki, Kumagai, Ryohei, Sugimoto, Asako, Kikuchi, Taisei, Namai, Satoshi, Tsuyama, Kenji
[
International Worm Meeting,
2017]
Caenorhabditis sp. 34 is a sister species of C. elegans recently isolated from the syconia of the fig Ficus septica on Ishigaki Island, Japan (see abstract by T. Kikuchi, et al.). C. sp. 34 is gonochoric and shares typological key characters with other Elegans supergroup species, but strikingly, adults are nearly twice as long as C. elegans. The optimal culture temperature for C. sp. 34 is significantly higher (27 deg C) than that of C. elegans (20 deg C). Young adult males and females tend to form clumps, and Dauer larvae are rarely observed in laboratory culture conditions. Recently the C. sp. 34 genome assembly was produced into six chromosomes (see abstract by T. Kikuchi, et al.). The marked differences from C. elegans in morphology, behaviors and ecology, and the availability of the complete genome sequence make C. sp. 34 highly attractive for comparative and evolutionary studies. To make C. sp. 34 genetically tractable, we have been developing genetic and molecular techniques and tools. Stable transgenic lines of C. sp.34 could be obtained by microinjecting marker plasmids commonly used in C. elegans, although the efficiency was lower than that in C. elegans. Both soaking and feeding RNAi was as effective as in C. elegans. A panel of antibodies against C. elegans proteins successfully recognized expected structures in C. sp. 34 by immunofluorescence. Thus, many of the rich genetic and molecular resources for C. elegans can be directly used for C. sp. 34 studies. We well present some of the comparative analyses of gene functions regarding the body size, germ cell formation and sex determination.