[
Methods,
2013]
The identification of endogenous targets remains an important challenge in understanding microRNA (miRNA) function. Past approaches using in silico methods and reporter constructs lack biological context that may enhance or inhibit target recognition. To address these limitations, several labs have utilized crosslinking and immunoprecipitation (CLIP) of Argonaute (Ago) proteins to identify miRNA targets. Recently, the Ule Lab introduced individual-nucleotide resolution CLIP (iCLIP) to increase the sensitivity of identifying protein-RNA interaction sites. Here we adapt the iCLIP protocol for use in Caenorhabditis elegans to identify endogenous sites targeted by the worm Argonaute (ALG-1) primarily responsible for miRNA function.
[
Mol Cell,
2016]
To identify endogenous miRNA-target sites, we isolated AGO-bound RNAs from Caenorhabditis elegans by individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP), which fortuitously also produced miRNA-target chimeric reads. Through the analysis of thousands of reproducible chimeras, pairing to the miRNA seed emerged as the predominant motif associated with functional interactions. Unexpectedly, we discovered that additional pairing to 3' sequences is prevalent in the majority of target sites and leads to specific targeting by members of miRNA families. By editing an endogenous target site, we demonstrate that 3' pairing determines targeting by specific miRNA family members and that seed pairing is not always sufficient for functional target interactions. Finally, we present a simplified method, chimera PCR (ChimP), for the detection of specific miRNA-target interactions. Overall, our analysis revealed that sequences in the 5' as well as the 3' regions of a miRNA provide the information necessary for stable and specific miRNA-target interactions invivo.