-
[
Worm Breeder's Gazette,
1994]
mab-3 YAC rescue David Zarkower, Mario de Bono, and Jonathan Hodgkin MRC Laboratory of Molecular Biology, Cambridge, England
-
[
BMC Biol,
2018]
David Weinkove is an associate professor at Durham University, UK, studying host-microbe interactions in the model organism Caenorhabditis elegans. David has been focusing on the way microbes affect the physiology of their hosts, including the process of aging. In this interview, he discusses the questions shaping his research, how they evolved over the years, and his guiding principles for leading a lab.
-
[
Worm Breeder's Gazette,
1992]
unc-4 LacZ expression in A-type motor neurons David M. Miller and Charles J. Niemeyer, Dept. of Cell Biology, Duke Univ. Medical Ctr, Durham, NC 27710
-
[
Worm Breeder's Gazette,
1993]
DIFFERENTIAL EFFECTS OF DAUER-DEFECTIVE MUTATIONS ON L1- SPECIFIC SURFACE ANTIGEN SWITCHING. David G. Grenache and Samuel M. Politz, Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA.
-
[
Worm Breeder's Gazette,
1994]
Strain names for non-C. elegans species Scott W. Emmonst, Armand Leroit, and David Fitch, Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, Department of Biology, New York University, RmlOO9 Main Bldg., Washington Square, New York, NY 10003
-
[
Worm Breeder's Gazette,
1994]
Cytology of degenerin-induced cell death in the PVM neuron David H. Hall, Guoqiang Gu+, Lei Gong#, Monica Driscoll#, and Martin Chalfie+, * Dept. Neuroscience, Albert Einstein College of Medicine, Bronx, N.Y. 10461 + Dept. Biological Sciences, Columbia University, New York, N.Y. 10027 # Dept. Molecular Biology and Biochemistry, Rutgers University, Piscataway, N.J. 08855
-
Vicencio, Jeremy, Kukhtar, Dmytro, CERON, Julian, Ruiz, Miguel, Brena, David, Cots, Mariona
[
International Worm Meeting,
2021]
Many C. elegans CRISPR-based genome editing protocols have been developed in the last few years, ranging from plasmid-based approaches to cloning-free methods. We contributed to this collection of methods with nested CRISPR (Vicencio et al., Genetics 2019), facilitating the efficient and cloning-free generation of knock-in strains. We have also investigated the relationship between fragment length and efficiency to determine insertion limits given a single double-strand break. Our data demonstrate that insertion efficiencies decrease as the inserted fragment's length increases from 600 bp to 1600 bp. In terms of expanding our tools, we have developed new nested CRISPR sequences for the insertion of SL2::mCherry, GFP::H2B, and GFP::degron::3xFLAG tags. We are interested in testing the efficiency of nucleases aside from Cas9 to overcome the NGG PAM limitation. Our comparative studies of Cas9 and Cas12a (TTTV) PAM indicate that both nucleases are equally efficient for inserting a fluorescent tag. We have also explored the use of Cas9 variants with minimal PAM requirements, namely SpG (NGN) and SpRY (NRN > NYN). Our preliminary results using ribonucleoproteins (RNPs) and a strain endogenously producing SpG Cas9 validate their use in C. elegans, albeit with adjusted conditions, to produce both imprecise indels and precise knock-ins. As examples, we observe up to 80% efficiency for knocking out a wrmScarlet reporter and up to 20% efficiency for knocking in a 100-bp fragment using SpG (NGC PAM). Overall, these tools will further expand genome editing possibilities in C. elegans with new nucleases that allow editing of previously inaccessible sites and an expanded catalog of nested CRISPR sequences that require little to no additional optimization.
-
[
J Vis Exp,
2017]
Next generation sequencing (NGS) technologies have revolutionized the nature of biological investigation. Of these, RNA Sequencing (RNA-Seq) has emerged as a powerful tool for gene-expression analysis and transcriptome mapping. However, handling RNA-Seq datasets requires sophisticated computational expertise and poses inherent challenges for biology researchers. This bottleneck has been mitigated by the open access Galaxy project that allows users without bioinformatics skills to analyze RNA-Seq data, and the Database for Annotation, Visualization, and Integrated Discovery (DAVID), a Gene Ontology (GO) term analysis suite that helps derive biological meaning from large data sets. However, for first-time users and bioinformatics' amateurs, self-learning and familiarization with these platforms can be time-consuming and daunting. We describe a straightforward workflow that will help C. elegans researchers to isolate worm RNA, conduct an RNA-Seq experiment and analyze the data using Galaxy and DAVID platforms. This protocol provides stepwise instructions for using the various Galaxy modules for accessing raw NGS data, quality-control checks, alignment, and differential gene expression analysis, guiding the user with parameters at every step to generate a gene list that can be screened for enrichment of gene classes or biological processes using DAVID. Overall, we anticipate that this article will provide information to C. elegans researchers undertaking RNA-Seq experiments for the first time as well as frequent users running a small number of samples.
-
[
Science,
2002]
As any homeowner knows, timely maintenance is vital for keeping a building functioning properly after construction is finished. The same is evidently true for the complex architecture of the nervous system - at least in the roundworm. On page 686, neuroscientists Oliver Hobert, Oscar Aurelio, and David Hall describe a new family of proteins that help keep the wiring of the worm's nervous system tangle free.
-
[
Parasitol Today,
1996]
Historically, peptidergic substances (in the form of neurosecretions) were linked to moulting in nematodes. More recently, there has been a renewal of interest in nematode neurobiology, initially triggered by studies demonstrating the localization of peptide immunoreactivities to the nervous system. Here, David Brownlee, Ian Fairweather, Lindy Holden-Dye and Robert Walker will review progress on the isolation of nematode neuropeptides and efforts to unravel their physiological actions and inactivation mechanisms. Future avenues for research are suggested and the potential exploitation of peptidergic pathways in future therapeutic strategies