-
[
Bioessays,
2004]
Local differences in chromatin organisation may profoundly affect the activity of eukaryotic genomes. Regulation at the level of DNA packaging requires the targeting of structural proteins and histone-modifying enzymes to specific sites and their stable or dynamic interaction with the nucleosomal fiber. The "chromodomain", a domain shared by many regulators of chromatin structure, has long been suspected to serve as a module mediating chromatin interactions in a variety of different protein contexts. However, recent functional analyses of a number of different chromodomains revealed an unexpected diversity of interaction targets, including histones, DNA and even RNA. The chromodomains of today seem to have evolved from a common ancestral fold to fulfill various functions in different molecular contexts. Combining information gained from recent functional and structural studies of chromodomains with a bioinformatic classification of their structure could lead to the definition of sequence motifs with predictive quality for chromodomain function.
-
Morimoto RI, Zhu Y, Orton K, Rolland T, Voisine C, Soper JH, Wachi S, Villella A, Vidal M, Ge H, Brehme M, Garza D
[
Cell Rep,
2014]
Chaperones are central to the proteostasis network (PN) and safeguard the proteome from misfolding, aggregation, and proteotoxicity. We categorized the human chaperome of 332 genes into network communities using function, localization, interactome, and expression data sets. During human brain aging, expression of 32% of the chaperome, corresponding to ATP-dependent chaperone machines, is repressed, whereas 19.5%, corresponding to ATP-independent chaperones and co-chaperones, are induced. These repression and induction clusters are enhanced in the brains of those with Alzheimer's, Huntington's, or Parkinson's disease. Functional properties of the chaperome were assessed by perturbation in C. elegans and human cell models expressing A, polyglutamine, and Huntingtin. Of 219 C. elegans orthologs, knockdown of 16 enhanced both A and polyQ-associated toxicity. These correspond to 28 human orthologs, of which 52% and 41% are repressed, respectively, in brain aging and disease and 37.5% affected Huntingtin aggregation in human cells. These results identify a critical chaperome subnetwork that functions in aging and disease.
-
[
Curr Mol Med,
2006]
All forms of life on Earth share a common ancestry. As a consequence, Homo sapiens shares a large number of genes essential for the development and maintenance of multicellular life with "simple" animals, such as the fruit fly Drosophila melanogaster and the nematode worm Caenorhabdites elegans. Indeed, Drosophila and C. elegans have successfully been used to unravel fundamental mechanisms underlying animal development. The sequencing of their genomes has revealed that a surprisingly large proportion of genes relevant for human disease have counterparts in the worm and in the fly. This includes many oncogenes and tumour suppressor genes and provides us with a unique opportunity to exploit the advantages of simple model organisms to further our understanding of the molecular basis of cancer. Recent work on the fly and worm homologs of the Retinoblastoma tumour suppressor (pRb) has uncovered some unexpected pRb functions: Evolutionary conserved pRb complexes participate in cell fate determination, repress germline-specific gene expression and interact with RNA interference pathways. Similar complexes appear to operate in human cells.
-
[
Epigenetics,
2009]
Distinct chromatin remodeling complexes can share a common ATPase subunit. The functional characteristics of each remodeling complex are determined by the respective ATPase-associated subunits. The Mi-2 nucleosome remodeling ATPase has so far only been shown to reside within Nucleosome Remodeling and Deacetylase (NuRD) complexes. Here we will review the recent discovery of two Mi-2 related remodelers that function independently of NuRD and that act as SUMO (small ubiquitin-related modifier)-dependent corepressors: First, Mi-2 exists in a novel chromatin remodeling complex, dMec, that does not rely on histone deacetylation to effect transcriptional repression of proneural genes. Second, the Mi-2 related factor dCHD3 acts as a monomer and does not associate with additional subunits in vivo. These recent results have uncovered an unanticipated complexity in the composition and function of CHD (Chromodomain-Helicase-DNA-binding) complexes.
-
Pennington PR, Heistad RM, Nyarko JNK, Barnes JR, Bolanos MAC, Parsons MP, Knudsen KJ, De Carvalho CE, Leary SC, Mousseau DD, Buttigieg J, Maley JM, Quartey MO
[
Sci Rep,
2021]
The pool of -Amyloid (A) length variants detected in preclinical and clinical Alzheimer disease (AD) samples suggests a diversity of roles for A peptides. We examined how a naturally occurring variant, e.g. A(1-38), interacts with the AD-related variant, A(1-42), and the predominant physiological variant, A(1-40). Atomic force microscopy, Thioflavin T fluorescence, circular dichroism, dynamic light scattering, and surface plasmon resonance reveal that A(1-38) interacts differently with A(1-40) and A(1-42) and, in general, A(1-38) interferes with the conversion of A(1-42) to a -sheet-rich aggregate. Functionally, A(1-38) reverses the negative impact of A(1-42) on long-term potentiation in acute hippocampal slices and on membrane conductance in primary neurons, and mitigates an A(1-42) phenotype in Caenorhabditis elegans. A(1-38) also reverses any loss of MTT conversion induced by A(1-40) and A(1-42) in HT-22 hippocampal neurons and APOE 4-positive human fibroblasts, although the combination of A(1-38) and A(1-42) inhibits MTT conversion in APOE 4-negative fibroblasts. A greater ratio of soluble A(1-42)/A(1-38) [and A(1-42)/A(1-40)] in autopsied brain extracts correlates with an earlier age-at-death in males (but not females) with a diagnosis of AD. These results suggest that A(1-38) is capable of physically counteracting, potentially in a sex-dependent manner, the neuropathological effects of the AD-relevant A(1-42).
-
[
Worm Breeder's Gazette,
2003]
Wormgenes is a new resource for C.elegans offering a detailed summary about each gene and a powerful query system.
-
[
Front Pharmacol,
2020]
Oligomeric assembly of Amyloid- (A) is the main toxic species that contribute to early cognitive impairment in Alzheimer's patients. Therefore, drugs that reduce the formation of A oligomers could halt the disease progression. In this study, by using transgenic <i>Caenorhabditis elegans</i> model of Alzheimer's disease, we investigated the effects of frondoside A, a well-known sea cucumber <i>Cucumaria frondosa</i> saponin with anti-cancer activity, on A aggregation and proteotoxicity. The results showed that frondoside A at a low concentration of 1 M significantly delayed the worm paralysis caused by A aggregation as compared with control group. In addition, the number of A plaque deposits in transgenic worm tissues was significantly decreased. Frondoside A was more effective in these activities than ginsenoside-Rg3, a comparable ginseng saponin. Immunoblot analysis revealed that the level of small oligomers as well as various high molecular weights of A species in the transgenic <i>C. elegans</i> were significantly reduced upon treatment with frondoside A, whereas the level of A monomers was not altered. This suggested that frondoside A may primarily reduce the level of small oligomeric forms, the most toxic species of A. Frondoside A also protected the worms from oxidative stress and rescued chemotaxis dysfunction in a transgenic strain whose neurons express A. Taken together, these data suggested that low dose of frondoside A could protect against A-induced toxicity by primarily suppressing the formation of A oligomers. Thus, the molecular mechanism of how frondoside A exerts its anti-A aggregation should be studied and elucidated in the future.
-
[
International Journal of Developmental Biology,
1998]
Pleiotropy , a situation in which a single gene influences multiple phenotypic tra its, can arise in a variety of ways. This paper discusses possible underlying mechanisms and proposes a classification of the various phenomena involved.
-
[
Curr Biol,
2011]
Recent work on a Caenorhabditis elegans transmembrane ATPase reveals a central role for the aminophospholipid phosphatidylethanolamine in the production of a class of extracellular vesicles.
-
[
Naturwissenschaften,
2004]
Animals respond to signals and cues in their environment. The difference between a signal (e.g. a pheromone) and a cue (e.g. a waste product) is that the information content of a signal is subject to natural selection, whereas that of a cue is not. The model free-living nematode Caenorhabditis elegans forms an alternative developmental morph (the dauer larva) in response to a so-called 'dauer pheromone', produced by all worms. We suggest that the production of 'dauer pheromone' has no fitness advantage for an individual worm and therefore we propose that 'dauer pheromone' is not a signal, but a cue. Thus, it should not be called a pheromone.